CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4457-4468.DOI: 10.11949/0438-1157.20190331
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Feng DENG1,2(),Qiang XIE1(),Deqian LIU1,Chaoran WAN1,Xiaoqing HUANG1,Xuemei GU2
Received:
2019-04-01
Revised:
2019-07-24
Online:
2019-11-05
Published:
2019-11-05
Contact:
Qiang XIE
邓锋1,2(),解强1(),刘德钱1,万超然1,黄小晴1,顾雪梅2
通讯作者:
解强
作者简介:
邓锋(1986—),男,博士研究生,副教授,基金资助:
CLC Number:
Feng DENG, Qiang XIE, Deqian LIU, Chaoran WAN, Xiaoqing HUANG, Xuemei GU. Preparation of mesoporous peat-based activated carbon with peak distribution of 2—5 nm pores[J]. CIESC Journal, 2019, 70(11): 4457-4468.
邓锋, 解强, 刘德钱, 万超然, 黄小晴, 顾雪梅. 2~5 nm孔集中分布泥炭基中孔活性炭的制备[J]. 化工学报, 2019, 70(11): 4457-4468.
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
Mad ① | Ad ② | Vdaf ③ | FCdaf ④ | Cdaf | Hdaf | Ndaf | Odaf ⑤ | St,d ⑥ |
15.22 | 15.78 | 66.96 | 33.04 | 43.06 | 5.24 | 0.96 | 50.23 | 0.51 |
Table 1 Proximate and ultimate analysis of peat sample
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
Mad ① | Ad ② | Vdaf ③ | FCdaf ④ | Cdaf | Hdaf | Ndaf | Odaf ⑤ | St,d ⑥ |
15.22 | 15.78 | 66.96 | 33.04 | 43.06 | 5.24 | 0.96 | 50.23 | 0.51 |
综纤维素/%(质量) | 多戊糖/%(质量) | 木质素及其衍生物/%(质量) | |
---|---|---|---|
酸不溶 | 酸溶 | ||
12.08 | 4.59 | 58.14 | 3.37 |
Table 2 Main organic composition of peat sample
综纤维素/%(质量) | 多戊糖/%(质量) | 木质素及其衍生物/%(质量) | |
---|---|---|---|
酸不溶 | 酸溶 | ||
12.08 | 4.59 | 58.14 | 3.37 |
样品编号 | 磷酸浸渍比 | 活化温度/℃ | 活化时间/min |
---|---|---|---|
PSAC1 | 0.7 | 500 | 180 |
PSAC2 | 1.0 | 500 | 180 |
PSAC3 | 1.2 | 500 | 180 |
PSAC4 | 1.5 | 500 | 180 |
PSAC5 | 1.2 | 400 | 180 |
PSAC6 | 1.2 | 450 | 180 |
PSAC7 | 1.2 | 550 | 180 |
PSAC8 | 1.2 | 600 | 180 |
PSAC9 | 1.2 | 450 | 120 |
PSAC10 | 1.2 | 450 | 150 |
PSAC11 | 1.2 | 450 | 210 |
Table 3 Preparation conditions of activated carbon samples
样品编号 | 磷酸浸渍比 | 活化温度/℃ | 活化时间/min |
---|---|---|---|
PSAC1 | 0.7 | 500 | 180 |
PSAC2 | 1.0 | 500 | 180 |
PSAC3 | 1.2 | 500 | 180 |
PSAC4 | 1.5 | 500 | 180 |
PSAC5 | 1.2 | 400 | 180 |
PSAC6 | 1.2 | 450 | 180 |
PSAC7 | 1.2 | 550 | 180 |
PSAC8 | 1.2 | 600 | 180 |
PSAC9 | 1.2 | 450 | 120 |
PSAC10 | 1.2 | 450 | 150 |
PSAC11 | 1.2 | 450 | 210 |
样品 | 产率/% | 碘值/(mg·g-1) | 亚甲蓝值/(mg·g-1) | 焦糖脱色/% |
---|---|---|---|---|
PSAC1 | 54.88 | 269 | 60 | 3 |
PSAC2 | 58.22 | 348 | 74 | 24 |
PSAC3 | 69.68 | 344 | 74 | 43 |
PSAC4 | 68.45 | 382 | 96 | 58 |
PSAC5 | 59.30 | 496 | 102 | 53 |
PSAC6 | 67.65 | 402 | 86 | 47 |
PSAC7 | 68.95 | 268 | 70 | 38 |
PSAC8 | 65.09 | 238 | 56 | 31 |
PSAC9 | 68.36 | 419 | 84 | 44 |
PSAC10 | 69.78 | 410 | 82 | 42 |
PSAC11 | 67.34 | 389 | 80 | 36 |
Table 4 Yield and adsorption capacity of activated carbon samples
样品 | 产率/% | 碘值/(mg·g-1) | 亚甲蓝值/(mg·g-1) | 焦糖脱色/% |
---|---|---|---|---|
PSAC1 | 54.88 | 269 | 60 | 3 |
PSAC2 | 58.22 | 348 | 74 | 24 |
PSAC3 | 69.68 | 344 | 74 | 43 |
PSAC4 | 68.45 | 382 | 96 | 58 |
PSAC5 | 59.30 | 496 | 102 | 53 |
PSAC6 | 67.65 | 402 | 86 | 47 |
PSAC7 | 68.95 | 268 | 70 | 38 |
PSAC8 | 65.09 | 238 | 56 | 31 |
PSAC9 | 68.36 | 419 | 84 | 44 |
PSAC10 | 69.78 | 410 | 82 | 42 |
PSAC11 | 67.34 | 389 | 80 | 36 |
样品 | S BET ① / (m2·g-1) | 比孔容/(cm3·g-1) | 比孔容率/% | 2~5 nm孔占中孔容比率/% | D ave ⑥/nm | ||||
---|---|---|---|---|---|---|---|---|---|
V t ② | V micro ③ | V meso ④ | V 2—5 ⑤ | 中孔 | 2~5 nm孔 | ||||
PSAC1 | 555.10 | 0.365 | 0.129 | 0.193 | 0.0536 | 52.95 | 14.71 | 27.77 | 3.34 |
PSAC2 | 653.00 | 0.363 | 0.204 | 0.141 | 0.0757 | 38.85 | 20.85 | 53.69 | 2.59 |
PSAC3 | 620.41 | 0.414 | 0.158 | 0.186 | 0.0830 | 44.97 | 20.07 | 44.62 | 2.95 |
PSAC4 | 678.52 | 0.475 | 0.152 | 0.210 | 0.1475 | 44.20 | 31.04 | 70.24 | 2.85 |
PSAC5 | 698.96 | 0.466 | 0.190 | 0.196 | 0.0973 | 42.06 | 20.88 | 49.64 | 2.81 |
PSAC6 | 633.96 | 0.418 | 0.172 | 0.186 | 0.0885 | 44.54 | 21.19 | 47.58 | 2.87 |
PSAC7 | 575.30 | 0.378 | 0.140 | 0.171 | 0.0782 | 45.29 | 20.70 | 45.73 | 2.96 |
PSAC8 | 545.71 | 0.347 | 0.125 | 0.161 | 0.0754 | 46.45 | 21.76 | 46.83 | 2.97 |
PSAC9 | 510.97 | 0.416 | 0.136 | 0.205 | 0.0916 | 49.26 | 22.02 | 44.68 | 3.16 |
PSAC10 | 649.81 | 0.461 | 0.162 | 0.214 | 0.1052 | 46.40 | 22.82 | 49.16 | 3.01 |
PSAC11 | 540.02 | 0.402 | 0.132 | 0.192 | 0.0942 | 47.73 | 23.41 | 49.06 | 3.09 |
Table 5 Pore structure parameters of activated carbon samples
样品 | S BET ① / (m2·g-1) | 比孔容/(cm3·g-1) | 比孔容率/% | 2~5 nm孔占中孔容比率/% | D ave ⑥/nm | ||||
---|---|---|---|---|---|---|---|---|---|
V t ② | V micro ③ | V meso ④ | V 2—5 ⑤ | 中孔 | 2~5 nm孔 | ||||
PSAC1 | 555.10 | 0.365 | 0.129 | 0.193 | 0.0536 | 52.95 | 14.71 | 27.77 | 3.34 |
PSAC2 | 653.00 | 0.363 | 0.204 | 0.141 | 0.0757 | 38.85 | 20.85 | 53.69 | 2.59 |
PSAC3 | 620.41 | 0.414 | 0.158 | 0.186 | 0.0830 | 44.97 | 20.07 | 44.62 | 2.95 |
PSAC4 | 678.52 | 0.475 | 0.152 | 0.210 | 0.1475 | 44.20 | 31.04 | 70.24 | 2.85 |
PSAC5 | 698.96 | 0.466 | 0.190 | 0.196 | 0.0973 | 42.06 | 20.88 | 49.64 | 2.81 |
PSAC6 | 633.96 | 0.418 | 0.172 | 0.186 | 0.0885 | 44.54 | 21.19 | 47.58 | 2.87 |
PSAC7 | 575.30 | 0.378 | 0.140 | 0.171 | 0.0782 | 45.29 | 20.70 | 45.73 | 2.96 |
PSAC8 | 545.71 | 0.347 | 0.125 | 0.161 | 0.0754 | 46.45 | 21.76 | 46.83 | 2.97 |
PSAC9 | 510.97 | 0.416 | 0.136 | 0.205 | 0.0916 | 49.26 | 22.02 | 44.68 | 3.16 |
PSAC10 | 649.81 | 0.461 | 0.162 | 0.214 | 0.1052 | 46.40 | 22.82 | 49.16 | 3.01 |
PSAC11 | 540.02 | 0.402 | 0.132 | 0.192 | 0.0942 | 47.73 | 23.41 | 49.06 | 3.09 |
样品 | I D1/I ALL | I D2/I ALL | I D3/I ALL | I D4/I ALL | I G/I ALL | I D1/I G | R2 |
---|---|---|---|---|---|---|---|
PSAC1 | 0.4745 | 0.004207 | 0.1907 | 0.07929 | 0.2513 | 1.89 | 0.996 |
PSAC2 | 0.4855 | 0.006957 | 0.1836 | 0.08317 | 0.2408 | 2.02 | 0.997 |
PSAC3 | 0.4947 | 0.005361 | 0.1725 | 0.08196 | 0.2455 | 2.01 | 0.997 |
PSAC4 | 0.4984 | 0.005409 | 0.1688 | 0.08278 | 0.2446 | 2.04 | 0.998 |
PSAC5 | 0.4751 | 0.006167 | 0.1906 | 0.07664 | 0.2515 | 1.89 | 0.997 |
PSAC6 | 0.4873 | 0.006929 | 0.1767 | 0.07893 | 0.2502 | 1.95 | 0.997 |
PSAC7 | 0.5156 | 0.014610 | 0.1711 | 0.07391 | 0.2248 | 2.29 | 0.997 |
PSAC8 | 0.5222 | 0.009332 | 0.1619 | 0.07317 | 0.2334 | 2.24 | 0.995 |
PSAC9 | 0.4845 | 0.004719 | 0.1732 | 0.08138 | 0.2563 | 1.89 | 0.995 |
PSAC10 | 0.4788 | 0.004570 | 0.1807 | 0.08000 | 0.2559 | 1.87 | 0.996 |
PSAC11 | 0.4893 | 0.005730 | 0.1719 | 0.07964 | 0.2535 | 1.93 | 0.997 |
Table 6 Carbonaceous structure of activated carbon samples
样品 | I D1/I ALL | I D2/I ALL | I D3/I ALL | I D4/I ALL | I G/I ALL | I D1/I G | R2 |
---|---|---|---|---|---|---|---|
PSAC1 | 0.4745 | 0.004207 | 0.1907 | 0.07929 | 0.2513 | 1.89 | 0.996 |
PSAC2 | 0.4855 | 0.006957 | 0.1836 | 0.08317 | 0.2408 | 2.02 | 0.997 |
PSAC3 | 0.4947 | 0.005361 | 0.1725 | 0.08196 | 0.2455 | 2.01 | 0.997 |
PSAC4 | 0.4984 | 0.005409 | 0.1688 | 0.08278 | 0.2446 | 2.04 | 0.998 |
PSAC5 | 0.4751 | 0.006167 | 0.1906 | 0.07664 | 0.2515 | 1.89 | 0.997 |
PSAC6 | 0.4873 | 0.006929 | 0.1767 | 0.07893 | 0.2502 | 1.95 | 0.997 |
PSAC7 | 0.5156 | 0.014610 | 0.1711 | 0.07391 | 0.2248 | 2.29 | 0.997 |
PSAC8 | 0.5222 | 0.009332 | 0.1619 | 0.07317 | 0.2334 | 2.24 | 0.995 |
PSAC9 | 0.4845 | 0.004719 | 0.1732 | 0.08138 | 0.2563 | 1.89 | 0.995 |
PSAC10 | 0.4788 | 0.004570 | 0.1807 | 0.08000 | 0.2559 | 1.87 | 0.996 |
PSAC11 | 0.4893 | 0.005730 | 0.1719 | 0.07964 | 0.2535 | 1.93 | 0.997 |
1 | 刘红梅 . 城市生活垃圾焚烧厂周围环境介质中二英分布规律及健康风险评估研究[D]. 杭州: 浙江大学, 2013. |
Liu H M . Study on distribution and health risk assessment of PCDD/F emissions from municipal solid waste incineration (MSWIs) [D]. Hangzhou: Zhejiang University, 2013. | |
2 | 詹明秀, 陈彤, 付建英, 等 . 飞灰酸碱性对二英从头合成的影响[J]. 化工学报, 2015, 66(12): 4972-4979. |
Zhan M X , Chen T , Fu J Y , et al . Effects of acidity and alkaline of fly ash onde novo synthesis of dioxins[J]. CIESC Journal, 2015, 66(12): 4972-4979. | |
3 | 严密, 杨杰, 李晓东, 等 . 硫酸铵和尿素抑制飞灰合成二英[J]. 化工学报, 2013, 64(11): 4196-4202. |
Yan M , Yang J , Li X D , et al . Inhibition of PCDD/Fs formation from fly ash by ammonium sulfate and urea[J]. CIESC Journal, 2013, 64(11): 4196-4202. | |
4 | 杨永滨, 郑明辉, 刘征涛 . 二英类毒理学研究新进展[J]. 生态毒理学报, 2006, 1(2): 105-115. |
Yang Y B , Zheng M H , Liu Z T . Researching advancement of the dioxins toxicology[J]. Asian Journal of Ecotoxicology, 2006, 1(2): 105-115. | |
5 | 张漫雯, 冯桂贤, 黄蓉, 等 . 国产活性炭喷射去除大型城市生活垃圾焚烧发电厂烟气中的二英[J]. 环境工程学报, 2015, 9(11): 5531-5536. |
Zhang M W , Feng G X , Huang R , et al . Removal of dioxin in flue gas from a large-scale MSWI by domestic activated carbon injection[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5531-5536. | |
6 | Nagano S , Tamon H , Adzumi T , et al . Activated carbon from municipal waste[J]. Carbon, 2000, 38(6): 915-920. |
7 | 立本英机, 安部郁夫 . 活性炭的应用技术:其维持管理及存在问题[M]. 南京: 东南大学出版社, 2002: 267-268. |
Hideki T , Ikuo A . Application Technology of Activated Carbon: Maintenance Management and Existing Problems[M]. Nanjing: Southeast University Press, 2002: 267-268. | |
8 | 解立平 . 城市固体有机废弃物制备活性炭的研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2003. |
Xie L P . Produciton of activated carbon from municpal solid organic wastes[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2003. | |
9 | Corporation Cabot . Flue gas treatment[EB/OL]. [2018-12-10]. . |
10 | 张秋民, 袁庆春, 胡浩权, 等 . 东北两种泥炭超临界萃取物结构研究[J]. 燃料化学学报, 1992, 20(2): 43-49. |
Zhang Q M , Yuan Q C , Hu H Q , et al . Investigation on structure of two supercritical extracts from northeast peats[J]. Journal of Fuel Chemistry and Technology, 1992, 20(2): 43-49. | |
11 | 谢克昌 . 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 11. |
Xie K C . Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002: 11. | |
12 | Khadiran T , Hussein M Z , Zainal Z , et al . Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method[J]. BioResources, 2014, 10(1): 986-1007. |
13 | 任辉, 张荣, 孙东凯, 等 . 超临界水中氧化钙催化泥炭制氢[J]. 化工学报, 2004, 55(S1): 50-53. |
Ren H , Zhang R , Sun D K , et al . Hydrogen production from peat in super critical water in presence of calcium oxide[J]. Jorunal of Chemical Industry and Engineering(China), 2004, 55(S1): 50-53. | |
14 | 张双全 . 煤化学[M]. 徐州: 中国矿业大学出版社, 2015: 23. |
Zhang S Q . Coal Chemisrty[M]. Xuzhou: China University of Mining and Technology Press, 2015: 23. | |
15 | 张则有 . 泥炭资源开发与利用[M]. 长春: 吉林科学技术出版社, 1992: 81. |
Zhang Z Y . Development and Utilization of Peat Resource[M]. Changchun: Jilin Science and Technology Press, 1992: 81. | |
16 | Donald J , Ohtsuka Y , Xu C C . Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat[J]. Materials Letters, 2011, 65(4): 744-747. |
17 | Veksha A , Sasaoka E , Uddin M A . The effects of temperature on the activation of peat char in the presence of high calcium content[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 131-136. |
18 | Khadiran T , Hussein M Z , Zainal Z , et al . Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material[J]. Energy, 2015, 82(15): 468-478. |
19 | Kim J , Lee S S , Khim J . Peat moss-derived biochars as effective sorbents for VOCs removal in groundwater[J]. Environmental Geochemistry and Health, 2017, (8): 1-10. |
20 | Lee J , Yang X , Song H , et al . Effects of carbon dioxide on pyrolysis of peat[J]. Energy, 2017, 120(1): 929-936. |
21 | 左宋林 . 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
Zuo S L . A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
22 | 左宋林 . 磷酸活化法制备活性炭综述(Ⅰ): 磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. |
Zuo S L . Review on phosphoric acid activation for preparation of activated carbon(Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. | |
23 | Jagtoyen M , Derbyshire F . Activated carbons from yellow poplar and white oak by H3PO4 activation[J]. Carbon, 1998, 36(7): 1085-1087. |
24 | Solum M S , Pugmire R J , Jagtoyen M , et al . Evolution of carbon structure in chemically activated carbon[J]. Carbon, 1995, 33(9): 1247-1254. |
25 | Kaouah F , Boumaza S , Berrama T , et al . Preparation and characterization of activated carbon from wild olive cores(oleaster) by H3PO4 for the removal of Basic Red[J]. Journal of Cleaner Production, 2013, 8(54): 296-306. |
26 | 蒋剑春 . 活性炭制造与应用技术[M]. 北京: 化学工业出版社, 2018: 26. |
Jiang J C . Manufacturing and Application Technology of Activated Carbon[M]. Beijing: Chemical Industry Press, 2018: 26. | |
27 | Sheng C . Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324. |
28 | Sadezky A , Muckenhuber H , Grothe H , et al . Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
29 | Jawhari T , Roid A , Casado J . Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565. |
30 | 林雄超, 王彩红, 田斌, 等 . 脱灰对两种烟煤半焦碳结构及CO2气化反应性的影响[J]. 中国矿业大学学报, 2013, 42(6): 1040-1046. |
Lin X C , Wang C H , Tian B , et al . Effects of de-ashing on the micro-structural transformation and CO2 reactivity of two Chinese bituminous coal chars[J]. International Journal of Mining Science and Technology, 2013, 42(6): 1040-1046. | |
31 | Beyssac O , Goffé B , Petitet J , et al . On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. |
32 | Sforna M C , Van Z M A , Philippot P . Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old apex chert, Western Australia[J]. Geochimica et Cosmochimica Acta, 2014, 124(1): 18-33. |
33 | Baek J , Shin H , Chung D C , et al . Studies on the correlation between nanostructure and pore development of polymeric precursor-based activated hard carbons(Ⅱ): Transmission electron microscopy and Raman spectroscopy studies [J]. Journal of Industrial and Engineering Chemistry, 2017, 54(6): 324-331. |
34 | 解强, 边炳鑫 . 煤的炭化过程控制理论及其在煤基活性炭制备中的应用[M]. 徐州: 中国矿业大学出版社, 2002: 12. |
Xie Q , Bian B X . Principles of Control over Coal Carbonization & Its Application in Preparation of Activated Carbon[M]. Xuzhou: China University of Mining and Technology Press, 2002: 12. | |
35 | 宁永成 . 有机波谱学谱图解析[M]. 北京: 科学出版社, 2010: 106-119. |
Ning Y C . Analysis of Organic Spectrogram[M]. Beijing: Science Press, 2010: 106-119. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[4] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[5] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[6] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[7] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[8] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[11] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[12] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[13] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[14] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[15] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||