CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2027-2035.DOI: 10.11949/j.issn.0438-1157.20181308
• Reviews and monographs • Previous Articles Next Articles
Jingran ZHANG(),Xuan ZHOU,Hui WANG,Dandan ZHU,Xianning LI
Received:
2018-11-12
Revised:
2019-02-14
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jingran ZHANG
通讯作者:
张婧然
基金资助:
CLC Number:
Jingran ZHANG, Xuan ZHOU, Hui WANG, Dandan ZHU, Xianning LI. Research advances in treatment of heavy metal wastewater by microbial fuel cells[J]. CIESC Journal, 2019, 70(6): 2027-2035.
张婧然, 周璇, 王辉, 朱丹丹, 李先宁. 微生物燃料电池处理重金属废水的研究进展[J]. 化工学报, 2019, 70(6): 2027-2035.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181308
1 | Logan B E , Regan J M . Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12): 512-518. |
2 | Rabaey K , Verstraete W . Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298. |
3 | Modin O , Wang X , Wu X , et al . Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions[J]. Journal of Hazardous Materials, 2012, 235/236(20): 291-297. |
4 | Fu F L , Wang Q . Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. |
5 | Zhang L J , Tao H C , Wei X Y , et al . Bioelectrochemical recovery of ammonia-copper (Ⅱ) complexes from wastewater using a dual chamber microbial fuel cell[J]. Chemosphere, 2012, 89(10): 1177-1182. |
6 | Jiang Z G , Xu N , Liu B X , et al . Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China[J]. Ecotoxicology and Environmental Safety, 2018, 157: 1-8. |
7 | Gall J E , Boyd R S , Rajakaruna N . Transfer of heavy metals through terrestrial food webs: a review[J]. Environmental Monitoring and Assessment, 2015, 187(4): 21. |
8 | Begum Z A , Rahman I M , Tate Y , et al . Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants[J]. Chemosphere, 2012, 87(10): 1161-1170. |
9 | Sun Y , Li Y , Xu Y , et al . In situ, stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105/106: 200-206. |
10 | Agnello A C , Bagard M , Van E H , et al . Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563/564: 693-703. |
11 | Vigliotta G , Matrella S , Cicatelli A , et al . Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize[J]. Journal of Environmental Management, 2016, 179: 93-102. |
12 | Khodadad C L M , Zimmerman A R , Green S J , et al . Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43: 385-392. |
13 | Kumpiene J , Lagerkvist A , Maurice C . Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review[J]. Waste Management, 2008, 28(1): 215-225. |
14 | Wang G , Huang L P , Zhang Y F . Cathodic reduction of hexavalent chromium Cr (Ⅵ) coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30(11): 1959-1966. |
15 | Ter Heijne A , Liu F , Van Der Weijden R , et al . Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11): 4376-4381. |
16 | Wang Z , Lim B , Choi C . Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(10): 6304-6307. |
17 | Choi C , Cui Y . Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2012, 107: 522-525. |
18 | Wang Y H , Wang B S , Pan B , et al . Electricity production from a bio-electrochemical cell for silver recovery in alkaline media[J]. Applied Energy, 2013, 112: 1337-1341. |
19 | Li M , Zhou S Q , Xu Y T , et al . Simultaneous Cr (Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J]. Chemical Engineering Journal, 2018, 334: 1621-1629. |
20 | Miran W , Jang J , Nawaz M , et al . Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper[J]. Chemosphere, 2017, 189: 134-142. |
21 | Qiu R , Zhang B G , Li J X , et al . Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode[J]. Journal of Power Sources, 2017, 359: 379-383. |
22 | Holden J F , Adams M W W . Microbe-metal interactions in marine hydrothermal environments[J]. Current Opinion in Chemical Biology, 2003, 7(2): 160-165. |
23 | Wang H M , Ren Z J . Bioelectrochemical metal recovery from wastewater: a review[J]. Water Research, 2014, 66: 219-232. |
24 | Tandukar M , Huber S J , Onodera T , et al . Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(21): 8159-8165. |
25 | Kim C , Lee C R , Song Y E , et al . Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chemical Engineering Journal, 2017, 328: 703-707. |
26 | Liu L A , Yuan Y , Li F B , et al . In-situ C r ( Ⅵ ) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J]. Bioresource Technology, 2011, 102(3): 2468-2473. |
27 | Wu Y N , Zhao X , Jin M , et al . Copper removal and microbial community analysis in single-chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 372-377. |
28 | Abourached C , Catal T , Liu H . Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51: 228-233. |
29 | Ho N A D , Babel S , Sombatmankhong K . Factors influencing silver recovery and power generation in bio-electrochemical reactors[J]. Environmental Science and Pollution Research, 2017, 24(26): 21024-21037. |
30 | Huang L P , Chai X L , Cheng S A , et al . Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J]. Chemical Engineering Journal, 2011, 166(2): 652-661. |
31 | Rabaey K , Clauwaert P , Aelterman P , et al . Tubular microbial fuel cells for efficient electricity generation[J]. Environmental Science & Technology, 2005, 39(20): 8077-8082. |
32 | Choi C , Hu N . The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell[J]. Bioresource Technology, 2013, 133: 589-598. |
33 | Ha P T , Moon H , Kim B H , et al . Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage[J]. Biosensors & Bioelectronics, 2010, 25(7): 1629-1634. |
34 | Tao H C , Zhang L J , Gao Z Y , et al . Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor[J]. Bioresource Technology, 2011, 102(22): 10334-10339. |
35 | Li Y , Lu A H , Ding H R , et al . Cr (Ⅵ) reduction at rutile-catalyzed cathode in microbial fuel cells[J]. Electrochemistry Communications, 2009, 11(7): 1496-1499. |
36 | Huang L P , Wang Q , Jiang L J , et al . Adaptively evolving bacterial communities for complete and selective reduction of C r ( Ⅵ ) , C u ( Ⅱ ) , and Cd(Ⅱ) in biocathode bioelectrochemical systems[J]. Environmental Science & Technology, 2015, 49(16): 9914-9924. |
37 | Yang S Q , Jia B Y , Liu H . Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell[J]. Bioresource Technology, 2009, 100(3): 1197-1202. |
38 | Wu X Y , Zhu X J , Song T S , et al . Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J]. Bioresource Technology, 2015, 180: 185-191. |
39 | Norberg A B , Molin N . Toxicity of cadmium, cobalt, uranium and zinc to Zoogloea ramigera [J]. Water Research, 1983, 17(10): 1333-1336. |
40 | Ozbelge T A , Ozbelge H O , Altinten P . Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process[J]. Journal of Hazardous Materials, 2007, 142(1/2): 332-339. |
41 | Alexandrino M , Macias F , Costa R , et al . A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 362-370. |
42 | Kamika I , Momba M N B . Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems[J]. Science of the Total Environment, 2011, 410: 172-181. |
43 | Kamika I , Momba M N B . Comparing the tolerance limits of selected bacterial and protozoan species to vanadium in wastewater systems[J]. Water Air and Soil Pollution, 2012, 223(5): 2525-2539. |
44 | Abourached C , Catal T , Liu H . Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51: 228-233. |
45 | Zhou S , Wei C H , Liao C D , et al . Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment[J]. Journal of Environmental Sciences, 2008, 20(12): 1514-1518. |
46 | Hao L T , Zhang B G , Cheng M , et al . Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells[J]. Bioresource Technology, 2016, 201: 105-110. |
47 | Zhang Y P , Li G Q , Wen J , et al . Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems[J]. Chemosphere, 2018, 196: 377-385. |
48 | Li Y , Wu Y N , Puranik S , et al . Metals as electron acceptors in single-chamber microbial fuel cells[J]. Journal of Power Sources, 2014, 269: 430-439. |
49 | Xu W , Zhang H M , Li G , et al . A urine/Cr (Ⅵ) fuel cell—electrical power from processing heavy metal and human urine[J]. Journal of Electroanalytical Chemistry, 2016, 764: 38-44. |
50 | Tao H C , Liang M , Li W , et al . Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell[J]. Journal of Hazardous Materials, 2011, 189(1/2): 186-192. |
51 | Lim B S , Lu H , Choi C , et al . Recovery of silver metal and electric power generation using a microbial fuel cell[J]. Desalination and Water Treatment, 2015, 54(13): 3675-3681. |
52 | Li Z J , Zhang X W , Lei L C . Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J]. Process Biochemistry, 2008, 43(12): 1352-1358. |
53 | Liu H , Cheng S A , Logan B E . Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. |
54 | Jang J K , Pham T H , Chang I S , et al . Construction and operation of a novel mediator- and membrane-less microbial fuel cell[J]. Process Biochemistry, 2004, 39(8): 1007-1012. |
55 | Menicucci J , Beyenal H , Marsili E , et al . Procedure for determining maximum sustainable power generated by microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(3): 1062-1068. |
56 | Li N , Kakarla R , Min B . Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20606-20614. |
57 | Rismani-Yazdi H , Christy A D , Carver S M , et al . Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells[J]. Bioresource Technology, 2011, 102(1): 278-283. |
58 | Song T S , Yan Z S , Zhao Z W , et al . Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(11): 1489-1493. |
59 | Aelterman P , Versichele M , Marzorati M , et al . Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes[J]. Bioresource Technology, 2008, 99(18): 8895-8902. |
60 | Zhang B G , Zhou S G , Zhao H Z , et al . Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment[J]. Bioprocess and Biosystems Engineering, 2010, 33(2): 187-194. |
61 | Gil G C , Chang I S , Kim B H , et al . Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4): 327-334. |
62 | Bohannan E W , Huang L Y , Miller F S , et al . In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures[J]. Langmuir, 1999, 15(3): 813-818. |
63 | Switzer J A , Hung C J , Bohannan E W , et al . Electrodeposition of quantum-confined metal semiconductor nanocomposites[J]. Advanced Materials, 1997, 9(4): 334-338. |
64 | Biedermann G , Sillen L G . Studies on the hydrolysis of metal ions (30): a critical survey of the solubility equilibria of Ag2O[J]. Acta Chemica Scandinavica, 1960, 14(3): 717-725. |
65 | Rodriguez-Valadez F , Ortiz-Exiga C , Ibanez J G , et al . Electroreduction of Cr ( Ⅵ ) to C r ( Ⅲ ) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation[J]. Environmental Science & Technology, 2005, 39(6): 1875-1879. |
66 | Tao H C , Gao Z Y , Ding H , et al . Recovery of silver from silver ( Ⅰ ) -containing solutions in bioelectrochemical reactors[J]. Bioresource Technology, 2012, 111: 92-97. |
67 | Zhang B G , Feng C P , Ni J R , et al . Simultaneous reduction of vanadium (Ⅴ) and chromium (Ⅵ) with enhanced energy recovery based on microbial fuel cell technology[J]. Journal of Power Sources, 2012, 204: 34-39. |
68 | Jiang D , Curtis M , Troop E , et al . A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment[J]. International Journal of Hydrogen Energy, 2011, 36(1): 876-884. |
69 | Torres C I , Kato Marcus A , Rittmann B E . Kinetics of consumption of fermentation products by anode-respiring bacteria[J]. Applied Microbiology And Biotechnology, 2007, 77(3): 689-697. |
70 | Zhang B G , Hao L T , Tian C X , et al . Microbial reduction and precipitation of vanadium ( Ⅴ ) in groundwater by immobilized mixed anaerobic culture[J]. Bioresource Technology, 2015, 192: 410-417. |
71 | Habibul N , Hu Y , Wang Y K , et al . Bioelectrochemical chromium ( Ⅵ ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882-3889. |
72 | Tian L J , Li W W , Zhu T T , et al . Directed biofabrication of nanoparticles through regulating extracellular electron transfer[J]. Journal of the American Chemical Society, 2017, 139(35): 12149-12152. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[7] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[8] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[9] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[10] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[11] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[12] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[13] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[14] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[15] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||