CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2795-2801.DOI: 10.11949/0438-1157.20190112
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Ke FENG1(),Yue WANG1,Jinhua LI1(),Xueying CHU1,Siyi HU2,Zhiyuan LIN1
Received:
2019-02-11
Revised:
2019-05-06
Online:
2019-07-05
Published:
2019-07-05
Contact:
Jinhua LI
冯可1(),王玥1,李金华1(),楚学影1,胡思怡2,林志远1
通讯作者:
李金华
作者简介:
冯可(1992—),男,硕士研究生,<email>463343632@qq.com</email>
基金资助:
CLC Number:
Ke FENG, Yue WANG, Jinhua LI, Xueying CHU, Siyi HU, Zhiyuan LIN. Regulation of Cd2+ precursor reaction time on aspect ratio of CdSe quantum rod and its optical properties[J]. CIESC Journal, 2019, 70(7): 2795-2801.
冯可, 王玥, 李金华, 楚学影, 胡思怡, 林志远. Cd2+前体反应时间对CdSe量子棒长径比的调控及其光学特性研究[J]. 化工学报, 2019, 70(7): 2795-2801.
Add to citation manager EndNote|Ris|BibTeX
Cd2+前体反应时间/h | 长轴/nm | 短轴/nm | 长径比 |
---|---|---|---|
0 | 10.21±1.32 | 3.55±0.52 | 2.87±0.23 |
8 | 10.40±1.80 | 3.41±0.53 | 3.05±0.10 |
16 | 12.03±1.72 | 3.84±0.55 | 3.13±0.12 |
20 | 14.45±1.77 | 4.60±0.59 | 3.14±0.17 |
24 | 16.23±1.92 | 4.76±0.65 | 3.41±0.16 |
31 | 18.41±2.22 | 4.93±0.74 | 3.73±0.20 |
Table 1 Length-diameter ratio of CdSe quantum rods prepared by Cd2+ precursors with different reaction time
Cd2+前体反应时间/h | 长轴/nm | 短轴/nm | 长径比 |
---|---|---|---|
0 | 10.21±1.32 | 3.55±0.52 | 2.87±0.23 |
8 | 10.40±1.80 | 3.41±0.53 | 3.05±0.10 |
16 | 12.03±1.72 | 3.84±0.55 | 3.13±0.12 |
20 | 14.45±1.77 | 4.60±0.59 | 3.14±0.17 |
24 | 16.23±1.92 | 4.76±0.65 | 3.41±0.16 |
31 | 18.41±2.22 | 4.93±0.74 | 3.73±0.20 |
1 | XiongL, DaiJ, SongY, et al. Effects of doping on photoelectrical properties of one-dimensional α-Si3N4 nanomaterials: a first-principles study[J]. Physica B: Condensed Matter, 2018, 550: 32-38. |
2 | SunY Y, ZongZ M, LiZ K, et al. Seed-assisted thermal growth of one-dimensional TiO2, nanomaterials on carbon fibers[J]. Ceramics International, 2017, 43(3): 3171-3176. |
3 | MalhotraA, MaldovanM. Thermal transport in semiconductor nanotubes[J]. International Journal of Heat and Mass Transfer, 2019, 130: 368-374. |
4 | Zúñiga, A, FonsecaL, SouzaJ A, et al. Anomalous ferromagnetic behavior and size effects in CuO nanowires[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 77-81. |
5 | 王保玉, 张景会, 刘湛鋆.TiO2纳米管的制备与表征[J]. 精细化工,2003, 20(6): 333-336. |
WangB Y , ZhangJ H , LiuZ J. Preparation and characterization of TiO2 nanotubes[J]. Fine Chemicals,2003, 20(6): 333-336. | |
6 | BruchezJ M. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016. |
7 | ShipwayA N, KatzE, WillnerI. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications[J]. ChemPhysChem, 2015, 1(1): 18-52. |
8 | HuynhW U, DittmerJ J, AlivisatosA P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427 |
9 | 冯启彪. CdSe量子点的合成、表征及其应用研究[D]. 杭州: 浙江大学, 2006. |
FengQ B. Synthesis, characterization and application of CdSe quantum dots[D]. Hangzhou: Zhejiang University, 2006 | |
10 | 付红红, 栾伟玲, 袁斌霞, 等. 纳米晶/聚合物太阳能电池[J]. 化学进展, 2012, 24(9): 1837-1844. |
FuH H, LuanW L, YuanB X, et al. Nanocrystal/polymer solar cell[J]. Progress in Chemistry, 2012, 24(9): 1837-1844. | |
11 | 谢闯. CdSe纳米晶体的研究[D]. 天津: 天津大学, 2007. |
XieC. The study on the CdSe nanocrystals[D]. Tianjin: Tianjin University, 2007. | |
12 | ZhangX, XiaJ. Linear-polarization optical property of CdSe quantum rods[J]. Chinese Journal of Semiconductors, 2006, 27(12): 2094-2100. |
13 | ChenJ, ZhuL, LiZ. Manipulation of the overall polarization orientation in the focal volume of high numerical objectives[J]. Chinese Optics Letters, 2017, 16(1): 010501. |
14 | ZhouJ J, ChenG X, WuE, et al. Ultrasensitive polarized up-conversion of Tm3+–Yb3+ doped β-NaYF4 single nanorod[J]. Nano Letters, 2013, 13(5): 2241-2246. |
15 | JuS E, KimJ. Quantum dot light-emitting diodes employing phosphorescent organic molecules as double emission layers[J]. Electronic Materials Letters, 2019,15(11): 1-5. |
16 | ChoiS, MoonJ, ChoH, et al. Partially pyridine-functionalized quantum dots for efficient red, green, and blue light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(12): 3429-3435. |
17 | RastogiP, PalazonF, PratoM, et al. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5665. |
18 | PengX, MannaL, YangW, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404(6773): 59-61. |
19 | 米阿敏, 薛晋波, 申倩倩, 等. 长径比可控的CdS纳米棒制备及光催化性能研究[J]. 人工晶体学报, 2015, 44(6): 1586-1590. |
MiA M, XueJ B, ShenQ Q, et al. Preparation and photocatalytic performance of controllable aspect ratio of CdS nanorods[J]. Journal of Synthetic Crystals, 2015, 44(6): 1586-1590. | |
20 | MannaL, ScherE C, LiL S, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods[J]. Journal of the American Chemical Society, 2002, 124(24): 7136-45. |
21 | WisherA C, BronsteinI, ChechikV. Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents[J]. Chemical Communications, 2006, 15(15): 1637-1639. |
22 | PradhanS, ChenS, WangS, et al. Photo-gated charge transfer of organized assemblies of CdSe quantum dots[J]. Langmuir, 2006, 22(2): 787-793. |
23 | WongE M, HoertzP G, LiangC J, et al. Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles[J]. Langmuir, 2001, 17(26): 8362-8367. |
24 | YinY, AlivisatosA P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005, 437(7059): 664-670. |
25 | PengX, ThessingJ. Controlled Synthesis of High Quality Semiconductor Nanocrystals[M]//Semiconductor Nanocrystals and Silicate Nanoparticles. Springer Berlin Heidelberg, 2005: 79-119. |
26 | PengZ A, PengX. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth[J]. Journal of the American Chemical Society, 2002, 124(13): 3343-3353. |
27 | WangW, BanerjeeS, JiaS, et al. Ligand control of solubility and capping structure of colloidal CdSe nanorods[J]. Chemistry of Materials, 2007, 19(10): 2573-2580. |
28 | 马保国, 高超, 苏英,等. 反应物浓度与反应时间对高强石膏前驱体制备的影响[J]. 硅酸盐通报, 2017, 36(10): 3237-3242. |
MaB G, GaoC, SuY, et al. Influence of reactant concentration and reaction time on high-strength gypsum precursors synthesis[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3237-3242. | |
29 | BrusL. Electronic wave functions in semiconductor clusters: experiment and theory[J]. Journal of Physical Chemistry, 1986, 90(12): 2555-2560. |
30 | ScherE C, MannaL, AlivisatosA P. Shape control and applications of nanocrystals[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2003, 361(1803): 241-257. |
31 | KimJ, WongC Y, ScholesG D. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots[J]. ACC Chem. Res., 2009, 42(8): 1037-1046. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[11] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[12] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[15] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||