CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 15-22.DOI: 10.11949/j.issn.0438-1157.20181400
• Reviews and monographs • Previous Articles Next Articles
Hui SHANG(),Yu DING,Wenhui ZHANG
Received:
2018-11-22
Revised:
2018-11-30
Online:
2019-03-31
Published:
2019-03-31
Contact:
Hui SHANG
通讯作者:
商辉
作者简介:
商辉(1974—),女,博士研究生,副研究员,<email>huishang@cup.edu.cn</email>
基金资助:
CLC Number:
Hui SHANG, Yu DING, Wenhui ZHANG. Research progress of microwave assisted biodiesel production[J]. CIESC Journal, 2019, 70(S1): 15-22.
商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181400
1 | 梁斌. 生物柴油的生产技术[J]. 化工进展, 2005, 24(6): 577-585. |
LiangB. Manufacture technologies of biodiesel[J]. Chemical Industry and Engineering Progress, 2005, 24(6): 577-585. | |
2 | 巩利平. 生物柴油的优点与研究现状[J]. 太原大学学报, 2007, 8(4): 132-134. |
GongL P. The advantage and present research situation of biodiesel [J]. Journal of Taiyuan University, 2007, 8(4): 132-134. | |
3 | 朱建良, 张冠杰. 国内外生物柴油研究生产现状及发展趋势[J]. 化工时刊, 2004, 18(1): 23-27. |
ZhuJ L, ZhangG J. Current situation and development trend of the research and production of biodiesel[[J]. Chemical Industry Time, 2004, 18(1): 23-27. | |
4 | 王东军, 姜伟, 赵仲阳, 等. 油脂制备生物柴油工业化技术进展[J]. 天然气化工, 2017, 42(5): 114-119. |
WangD J, JiangW, ZhaoZ Y, et al. Progress in industrialization technologies for preparation of biodiesel from oils and fats[J]. Natural Gas Chemical Industry, 2017, 42(5): 114-119. | |
5 | 冯为为. 变废为宝“地沟油”绿色利用之路[J]. 节能与环保, 2017, (12): 40-42. |
FengW W. Turn waste into treasure, “ground oil” green utilization road[J]. Energy Conservation & Environment Protection, 2017, (12): 40-42. | |
6 | 中华人民共和国国家质量监督检查检疫总局, 中国国家标准化管理委员会. B5柴油: GB 25199—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. B5 diesel: GB 25199—2017[S]. Beijing: Standards Press of China, 2017. | |
7 | 冯以卓, 张瑞亮, 杨甜甜, 等. 压燃式发动机燃用F-T柴油/生物柴油混合燃料的燃烧及振动特性研究[J]. 可再生能源, 2018, 36(3): 334-339. |
FengY Z, ZhangR L, YangT T, et al. Combustion and vibration characteristics of a compression ignition engine fuelled with F-T diesel-biodiesel blends[J]. Renewable Energy Resources, 2018, 36(3): 334-339. | |
8 | 魏红明, 赵华. 生物柴油制备方法及应用现状[J]. 当代化工, 2006, 35(4): 246-249. |
WeiH M, ZhaoH. Preparation methods of application situation of biodiesel fuels[J]. Contemporary Chemical Industry, 2006, 35(4): 246-249. | |
9 | 张萍波, 韩秋菊, 范明明, 等. 酯交换法制备生物柴油反应机理的研究进展[J]. 石油化工, 2012, 41(9): 1081-1086. |
ZhangP B, HanQ J, FanM M, et al. Progresses in study on the mechanism of transesterification for biodiesel fuel[J]. Petrochemical Technology, 2012, 41(9): 1081-1086. | |
10 | 张秋云, 杨松, 李虎. 制备生物柴油的固体酸催化剂研究进展[J]. 化工进展, 2013, 32(3): 575-583. |
ZhangQ Y, YangS, LiH. Research progress in the preparation of biodiesel with solid acid as the catalyst[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 575-583. | |
11 | GedyeR, SmithF, WestawayK, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letter, 1986, 27(3): 279-282. |
12 | VrålstadH N, ΦSpets, LesaintC, et al. Dielectric properties of crude oil components [J]. Energy & Fuels, 2009, 23(11): 5596-5602. |
13 | MeredithR J. Engineers Handbook of Industrial Microwave Heating[M]. London: Institute of Electrical Engineers, 1998. |
14 | AmaisR S, DonatiG L, SchiavoD, et al. A simple dilute-and-shoot procedure for Si determination in diesel and biodiesel by microwave-induced plasma optical emission spectrometry[J]. Microchemical Journal, 2013, 106: 318-322. |
15 | AzcanN, DanismanA. Microwave assisted transesterification of rapeseed oil[J]. Fuel, 2008, 87(10/11): 1781-1788. |
16 | AzcanN, YilmazO. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation[J]. Fuel, 2013, 104: 614-619. |
17 | BoldorD, KanitkarA, TerigarB G, et al. Microwave assisted extraction of biodiesel feedstock from the seeds of invasive Chinese tallow tree[J]. Environmental Science Technology, 2010, 44(10): 4019-4025. |
18 | ChengJ, HuangR, YuT, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction[J]. Bioresource Technology, 2014, 151: 415-418. |
19 | ChoedkiatsakulI, NgaosuwanK, AssabumrungratS, et al. Biodiesel production in a novel continuous flow microwave reactor[J]. Renewable Energy, 2015, 83: 25-29. |
20 | da RósP C, de CastroH F, CarvalhoA K, et al. Microwave-assisted enzymatic synthesis of beef tallow biodiesel[J]. Journal of Industrial Microbiology, 2012, 39(4): 529-536. |
21 | DaiY M, ChenK T, ChenC C. Study of the microwave lipid extraction from microalgae for biodiesel production[J]. Chemical Engineering Journal, 2014, 250: 267-273. |
22 | EnweremaduC, MbarawaM. Technical aspects of production and analysis of biodiesel from used cooking oil—a review[J]. Renewable Sustainable Energy Reviews, 2009, 13(9): 2205-2224. |
23 | FooK, HameedB. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters[J]. Bioresource Technology, 2012, 103(1): 398-404 |
24 | AtadashiI M, ArouaM K, AzizA R A, et al. Production of biodiesel using high free fatty acid feedstocks[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3275-3285. |
25 | PinziS, GandiaL M, ArzamendiG, et al. Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification[J]. Bioresource Technology, 2011, 102(2): 1044-1050 |
26 | SabudakT, YildizM. Biodiesel production from waste frying oils and its quality control[J]. Waste Management, 2010, 30(5): 799-803. |
27 | FooK, HameedB. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation[J]. Bioresource technology, 2013, 130: 696-702. |
28 | GroismanY, GedankenA. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis[J]. The Journal of Physical Chemistry C, 2008, 112(24): 8802-8808. |
29 | GuldheA, SinghB, RawatI, et al. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst[J]. Chemical Engineering Research, 2014, 92(8): 1503-1511. |
30 | HernandoJ, LetonP, MatiaM P, et al. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes[J]. Fuel, 2007, 86(10/11): 1641-1644. |
31 | JaliliannosratiH, AminN A S, Talebian-KiakalaiehA, et al. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology[J]. Bioresource Technology, 2013, 136: 565-573. |
32 | KamathH V, RegupathiI, SaiduttaM. Optimization of two step karanja biodiesel synthesis under microwave irradiation[J]. Fuel Processing Technology, 2011, 92(1): 100-105. |
33 | KhemthongP, LuadthongC, NualpaengW, et al. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production[J]. Catalysis Today, 2012, 190(1): 112-116. |
34 | LamM K, LeeK T, MohamedA R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review[J]. Biotechnology Advances, 2010, 28(4): 500-518. |
35 | LeadbeaterN E, BarnardT M, StencelL M, et al. Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating[J]. Energy Fuels, 2008, 22(3): 2005-2008. |
36 | LiY, YeB, ShenJ, et al. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under microwave chemical reactor[J]. Bioresource Technology, 2013, 137: 220-225. |
37 | LinY C, YangP M, ChenS C, et al. Improving biodiesel yields from waste cooking oil using ionic liquids as catalysts with a microwave heating system[J]. Fuel Processing Technology, 2013, 115: 57-62. |
38 | MajewskiM W, PollackS A, Curtis-PalmerV A. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production[J]. Tetrahedron Letters, 2009, 50(37): 5175-5177. |
39 | MotasemiF, AniF N. A review on microwave-assisted production of biodiesel[J]. Renewable Sustainable Energy Reviews, 2012, 16(7): 4719-4733. |
40 | MuleyP D, BoldorD. Investigation of microwave dielectric properties of biodiesel components[J]. Bioresource Technology, 2013, 127: 165-174. |
41 | NogueiraB M, CarretoniC, CruzR, et al. Microwave activation of enzymatic catalysts for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 67(1/2): 117-121. |
42 | PatilP, ReddyH, MuppaneniT, et al. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions[J]. Bioresource Technology, 2013, 137: 278-285. |
43 | PatilP D, ReddyH, MuppaneniT, et al. Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel[J]. Green Chemistry, 2012, 14(3): 809-818. |
44 | RefaatA A. Different techniques for the production of biodiesel from waste vegetable oil[J]. International Journal of Environmental Science Technology, 2010, 7(1): 183-213. |
45 | RefaatA, El SheltawyS T. Time factor in microwave-enhanced biodiesel production[J]. WSEAS Transactions on Environment and Development, 2008, 4(4): 279. |
46 | Talebian-KiakalaiehA, AminN A S, MazaheriH. A review on novel processes of biodiesel production from waste cooking oil[J]. Applied Energy, 2013, 104: 683-710. |
47 | TeoC L, IdrisA. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production[J]. Bioresource Technology, 2014, 171: 477-481. |
48 | WaliW, HassanK, CullenJ, et al. Real time monitoring and intelligent control for novel advanced microwave biodiesel reactor[J]. Measurement, 2013, 46(1): 823-839. |
49 | 吴炼. 均相碱催化酯交换反应制备生物柴油过程强化研究[D]. 南宁: 广西大学, 2016 |
WuL. Process intensification study of the homogeneous base-catalyzed transesterification for biodiesel production[D]. Nanning: Guangxi University, 2016. | |
50 | 张增强, 孙楠, 高锦明, 等. 微波辅助棕榈油制备生物柴油的研究[J]. 中国油脂, 2008, 33(3): 53-55. |
ZhangZ Q, SunN, GaoJ M, et al. Preparation of biodiesel from palm oil assisted by microwave[J]. China Oils and Fats, 2008, 33(3): 53-55. | |
51 | 韩毅, 邓宇, 郝敬梅, 等. NaOH催化微波法制备生物柴油的工艺研究[J]. 精细石油化工进展, 2008, 9(1): 38-41. |
HanY, DengY, HaoJ M, et al. Research on preparation of biodiesel by NaOH base catalysis under microwave irradiation[J]. Advanges in Fine Petrochemicals, 2008, 9(1): 38-41. | |
52 | KumarR, KumarG R, ChandrashekarN. Microwave assisted alkali-catalyzed transesterification of pongamia pinnata seed oil for biodiesel production[J]. Bioresource Technology, 2011, 102(11): 6617-6620. |
53 | LinJ J, ChenY W. Production of biodiesel by transesterification of Jatropha oil with microwave heating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 43-50. |
54 | 李为民, 郑晓林, 徐春明, 等. 固体碱法制备生物柴油及其性能[J]. 化工学报, 2005, 56(4): 717-722. |
LiW M, ZhengX L, XuC M, alet . Preparation and its properties of biodiesel by using solid base catalyst[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(4): 717-722. | |
55 | 张洪浩, 张立科, 高娟娟. 微波辅助固体碱催化制备生物柴油[J]. 浙江化工, 2009, 40(3): 8-10. |
ZhangH H, ZhangL K, GaoJ J. Microwave-assisted solid base catalyst preparation of biodiesel[J]. Zhejiang Chemical Industry, 2009, 40(3): 8-10. | |
56 | NayebzadehH, SaghatoleslamiA, TabasizadehT. Application of microwave irradiation for preparation of a KOH/calcium aluminate nanocatalyst and biodiesel[J]. Chemical Engineer Technology, 2017, 40(10): 1826-1834. |
57 | FatimahI, YudhaS P. KF-modified natural halloysite as green catalyst in microwave assisted biodiesel conversion[J]. Energy Procedia, 2017, 105: 1796-1805. |
58 | 谢国剑. 高酸值潲水油制取生物柴油的研究[J]. 化工技术与开发, 2005, 34(2): 37-39. |
XieG J. Preparation of biodiesel from high acid value restaurant grease[J]. Technology & Development of Chemical Industry, 2005, 34(2): 37-39. | |
59 | 刘明超. 微波强化生物柴油制备的研究[D]. 天津: 天津大学, 2015. |
LiuM C. Research on preparation of biodiesel intensified by microwave irradiation[D]. Tianjin: Tianjin University, 2015. | |
60 | 张德谨, 谢永, 李梦玉, 等. 微波辅助玉米油基生物柴油制备及酯化反应动力学[J]. 过程工程学报, 2018, 18(4): 845-850. |
ZhangD J, XieY, LiM Y, et al. Preparation of biodiesel from corm oil assisted by microwave and reaction kinetics of esterification[J]. The Chinese Journal of Process Engineering, 2018, 18(4): 845-850. | |
61 | 张谡, 付玉杰, 王黎丽, 等. 微波辐射酸催化喜树种子油制备生物柴油工艺[J]. 化学工程, 2009, 37(1): 66-69. |
ZhangS, FuY J, WangL L, et al. Preparation of biodiesel from Camptotheca acuminata decne seed oil by acid catalysis under microwave irradiation[J]. Chemical Engineering (China), 2009, 37(1): 66-69. | |
62 | LeadbeaterN E, StencelL M. Fast, easy preparation of biodiesel using microwave heating[J]. Energy Fuels, 2006, 20 (5): 2281-2283. |
63 | 蔡新安, 张春干, 余忠定. 微波辐射酸催化潲水油合成生物柴油的研究[J]. 化学工程师, 2008, (9): 6-7. |
CaiX A, ZhangC G, YuZ D. Study on synthesizing biodiesel by the acid catalyst of waste restaurant grease under microwave radiation[J]. Chemical Engineer, 2008, (9): 6-7. | |
64 | 黄振东, 王睿, 于美青. KOH/ZrO2催化制备生物柴油新工艺[J]. 化工学报, 2016, 67(S2): 176-183. |
HuangZ D, WangR, YuM Q. New technique of biodiesel preparation catalyzed by KOH/ZrO2[J]. CIESC Journal, 2016, 67(S2): 176-183. | |
65 | 胡雪玲, 韦藤幼, 吴炼, 等. 改性膨润土催化麻疯树油酯交换反应动力学及生物柴油纯化[J]. 化工学报, 2015, 66(8): 3113-3119. |
HuX L, WeiT Y, WuL, et al. Kinetics of jatropha oil transesterification catalyzed by modified bentonite and biodiesel purification[J]. CIESC Journal, 2015, 66(8): 3113-3119. | |
66 | 颜姝丽, 鲁厚芳, 姜利寒, 等. 固体碱催化剂用于油脂甲醇酯交换反应制备生物柴油[J]. 化工学报, 2007, 58(10): 2506-2512. |
YanS L, LuH F, JiangL H, et al. Solid base catalysts for transesterification of oil with methanol to produce biodiesel[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2506-2512. | |
67 | SoltaniS, RashidU, NehdiI A, et al. Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 219-228. |
68 | YuanH, YangB, ZhuG. Biodiesel production with water-tolerance and a microwave absorbing catalyst using tung oil[J]. International Journal of Green Energy, 2013, 10(10): 999-1010. |
69 | 刘孟凯. B5祸市[J]. 中国石油石化, 2013, (23): 36-37. |
LiuM K. B5 disrupted the market[J]. China Petrochem, 2013, (23): 36-37. | |
70 | 何清. 进口商神奇通道: 假道生物柴油避税[N]. 21世纪经济报道, 2013-06-05(17). |
HeQ. Imported merchants magic channel: through the biodiesel tax avoidance[N]. 21st Century Business Herald, 2013-06-05(17). | |
71 | 陈琼可. 成品油消费税税率改变对消费需求的影响研究[D]. 昆明: 云南财经大学, 2017. |
ChenQ K. Study on the impact of changes in the consumption tax rate of refined oil on consumer demand[D]. Kunming: Yunnan University of Finance and Economics, 2017. | |
72 | 董海, 仇玄, 尹杰. 我国生物柴油市场现状及展望[J]. 国际石油经济, 2014, 22(10): 94-96. |
DongH, QiuX, YinJ. Current status and prospects of China’s biodiesel market[J]. International Petroleum Economics, 2014, 22(10): 94-96. | |
73 | 晓波.“变废为宝”的生物柴油缘何陷绝境?[N]. 中国能源报, 2016-09-05(4). |
XiaoB. Why can biodiesel, which can turn waste into treasure, fall into desperation?[N]. China Energy News, 2016-09-05(4). | |
74 | 我国明确2020年全面推广车用乙醇汽油[J]. 政策, 2017, (10): 78. |
China has clearly promoted the comprehensive promotion of ethanol gasoline for vehicles in 2020[J]. Policy, 2017, (10): 78. | |
75 | 陈玺撼. 今年力争让“B5生物柴油”进200多座加油站[N]. 解放日报, 2018-04-24(5). |
ChenX H. This year, we will strive to make “B5 biodiesel” into more than 200 gas stations[N]. Liberation Daily, 2018-04-24(5). | |
76 | BarnardT M, LeadbeaterN E, BoucherM B, et al. Continuous-flow preparation of biodiesel using microwave heating[J]. Energy Fuels, 2007, 21(3) : 1777-1781. |
77 | EstelL, PouxM, BenamaraN, et al. Continuous flow-microwave reactor: where are we?[J]. Chemical Engineering and Processing: Process Intensification, 2017, 113: 56-64. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||