1 |
JinH, FanC, WeiW, et al. Evolution of pore structure and produced gases of Zhundong coal particle during gasification in supercritical water[J]. The Journal of Supercritical Fluids, 2018, (136): 102-109.
|
2 |
WiserW H, HillG R, KertamusN J. Kinetic study of pyrolysis of high volatile bituminous coal[J]. Industrial & Engineering Chemistry Research, 1967, 6(1): 133-138.
|
3 |
ArenillasA, PevidaC, RubieraF. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003, 82(15): 2001-2006.
|
4 |
LuY K, ChangL P, XieK C. Effects of coal structure on its pyrolysis characteristics under N2 and Ar atmosphere[J]. Energy Sources, 2001, 23(8): 717-725.
|
5 |
赵岩, 刘栗, 邱朋华, 等. 准东煤热解动力学单一扫描速率法应用局限性[J]. 哈尔滨工业大学学报, 2016, 48(7): 58-66.
|
|
ZhaoY, LiuL, QiuP H, alet .Application limitations of single scanning rate method in pyrolysis kinetics of Zhundong coal[J]. Journal of Harbin Institute of Technology, 2016, 48(7): 58-66.
|
6 |
OpfermannJ R, KaisersbergerE, FlammersheimH J. Model-free analysis of thermoanalytical data-advantages and limitations[J]. Thermochimica Acta, 2002, 391(1/2): 119-127.
|
7 |
PittG J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, (41): 267-274.
|
8 |
WangJ, LiP, LiangL. Kinetics modeling of low-rank coal pyrolysis based on a three-Gaussian distributed activation energy model (DAEM) reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702.
|
9 |
CaprariisB D, FilippisP D, HerceC. Double-Gaussian distributed activation energy model for coal devolatilization[J]. Energy & Fuels, 2012, 26(10): 6153-6159.
|
0 |
SerioM A, HamblenD G, MarkhamJ R. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138-152.
|
11 |
MustafaG, SeminG. A study on thermal decomposition kinetics of some turkish coals[J]. Energy Sources, 2005, 27(8): 749-759.
|
12 |
JiangG D, WeiL P. Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data[M]// Phase Change Materials and Their Applications. London: IntechOpen, 2018: 143-163.
|
13 |
JiangG D, WeiL P. Depolymerization model for flash pyrolysis of zhundong coal: competition and coordination reaction mechanisms between the bridge scission and condensation[J]. Thermochimica Acta, 2019, (675): 44-54.
|
14 |
BurnhamA, DinhL. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis & Calorimetry, 2007, 89(2): 479-490.
|
15 |
SharpJ H, WentworthS A. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969, 41(14): 2060-2062.
|
16 |
CoatsA W, RedfernJ P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, (201): 68-69.
|
17 |
VyazovkinS, WightC A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340/341: 53-68.
|
18 |
FriedmanH L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1): 183-195.
|
19 |
LiuH. Combustion of coal chars in O2/CO2 and O2/N2 mixtures: a comparative study with non-isothermal thermogravimetric analyzer (TGA) tests[J]. Energy & Fuels, 2009, 23(9): 4278-4285.
|
20 |
KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 2002, 29(11): 1702-1706.
|
21 |
江国栋, 魏利平, 滕海鹏, 等. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68: 1417-1422.
|
|
JiangG D, WeiL P, TengH P, et al. A kinetic model based on TGA data for pyrolysis of Zhundong coal[J]. CIESC Journal, 2017, 68: 1417-1422.
|
22 |
CaiJ, WuW, LiuR. Sensitivity analysis of three-parallel-DAEM-reaction modelfor describing rice straw pyrolysis[J]. Bioresour. Technol., 2013, 132: 423.
|
23 |
CaiJ, LiuR. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[J]. Bioresour. Technol., 2008, 99(8): 2795-2799.
|
24 |
RiceA M. An introduction to radiotherapy[J]. Nursing Standard, 1997, 12(3): 49.
|
25 |
韩峰, 蒙爱红, 鲁伟, 等. 沙尔湖褐煤和红沙泉不粘煤的热解动力学及热解产物分布[J]. 清华大学学报 (自然科学版), 2013, 53(3): 348-352.
|
|
HanF, MengA H, LuW, et al. Pyrolysis kinetics and product distribution of two coals[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(3): 348- 352.
|
26 |
ArenillasA, RubieraF, PevidaC, et al. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical & Applied Pyrolysis, 2001, 58/59(2): 685-701.
|
27 |
JainA A, MehraA, RanadeV V. Processing of TGA data: analysis of isoconversional and model fitting methods[J]. Fuel, 2016, 165: 490-498.
|
28 |
VyazovkinS. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183.
|
29 |
FioriL, ValbusaM, LorenziD, et al. Modeling of the devolatilization kinetics during pyrolysis of grape residues[J]. Bioresour. Technol., 2012, 103: 389.
|
30 |
王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究 [J].煤炭转化, 2009, 32(3): 1-5.
|
|
WangJ H, ChangL P, XieK C. Study on the pyrolysis andkinetics of coal of western China[J]. Coal Conversion, 2009, 32(3): 1-5.
|
31 |
YanJ C, JiaoH R, LiZ K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods [J]. Fuel, 2019, 241: 382-391.
|