CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2061-2068.DOI: 10.11949/0438-1157.20191411
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhongmin LANG(),Gangqiang WU,Wenxiu HE,Xiaoxing HAN,Yanmeng GOU,Shuangying LI
Received:
2019-11-25
Revised:
2020-02-28
Online:
2020-05-05
Published:
2020-05-05
Contact:
Zhongmin LANG
通讯作者:
郎中敏
作者简介:
郎中敏(1980—),女,硕士,副教授,基金资助:
CLC Number:
Zhongmin LANG, Gangqiang WU, Wenxiu HE, Xiaoxing HAN, Yanmeng GOU, Shuangying LI. Pool boiling heat transfer characteristics of CeO2/deionized water nanofluids[J]. CIESC Journal, 2020, 71(5): 2061-2068.
郎中敏, 吴刚强, 赫文秀, 韩晓星, 苟延梦, 李双莹. 二氧化铈/水基纳米流体核沸腾传热特性[J]. 化工学报, 2020, 71(5): 2061-2068.
1 | Choi S U S. Enhancing thermal conductivity of fluids with nano-particles [J]. ASME-Publications-Fed, 1995, 231(66): 99-103. |
2 | Vafaei S, Wen D. Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel[J]. Int. J. Heat Mass Transfer, 2012, 48: 349-357. |
3 | Vafaei S. Nanofluid pool boiling heat transfer phenomenon [J]. Powder Technology, 2015, 277: 181-192. |
4 | 许世民, 郎中敏, 王亚雄, 等. 羟基化多壁碳纳米管/R141b纳米流体核沸腾[J]. 化工学报, 2015, 66(11): 4424-4430. |
Xu S M, Lang Z M, Wang Y X, et al. Nucleate boiling heat transfer of hydroxylated carbon nano-tubes/R141b nanofluids on smooth plate[J]. CIESC Journal, 2015, 66(11): 4424-4430. | |
5 | Li W F, Jia Q L, Dan Y L, et al. The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids[J]. Int. J. Therm. Sci., 2015, 91: 83-95. |
6 | Amir A, Seyed A A F, Sarah M, et al. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids[J]. J. Therm. Anal. Calorim., 2019, 135: 697-711. |
7 | Hama J, Kima J, Cho H. Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution[J]. Appl. Therm. Eng., 2016, 108: 1020-1032. |
8 | Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. Int. J. Heat Mass Transfer, 2007, 50: 4105-4116. |
9 | Park S D, Lee S W, Kang S, et al. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J]. Appl. Phys. Lett., 2010, 97: 023103. |
10 | 刘海洪, 李先宁, 蔡杰. 浅水湖泊升流循环复氧装置的研制与性能[J]. 化工学报, 2014, 65(2): 718-723. |
Liu H H, Li X N, Cai J. Development and performance of flowing-cycle reoxygenation devices for shallow lake[J]. CIESC Journal, 2014, 65(2): 718-723. | |
11 | Yao S, Teng Z. Effect of nanofluids on boiling heat transfer performance[J]. Appl. Sci., 2019, 9: 2818. |
12 | Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface[J]. J. Therm. Anal. Calorim., 2019, 135: 1753-1762. |
13 | Yadav N, Jaiswal A K, Dey K K, et al. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response[J]. Mater. Chem. Phys., 2018, 218: 10-17. |
14 | Ding G, Jiao W, Chen L, et al. A self-sensing, superhydrophobic, heterogeneous graphene network with controllable adhesion behavior[J]. J. Mater. Chem. A, 2018, 35: 16992-17000. |
15 | Hwang W K, Choy S, Song S L, et al. Enhancement of nanofluid stability and critical heat flux in pool boiling with nanocellulos [J]. Carbohyd. Polym., 2019, 213: 393-402. |
16 | Ko Y G, Do T, Chun Y, et al. CeO2-covered nanofiber for highly efficient removal of phosphorus from aqueous solution[J]. J. Hazard. Mater., 2016, 307: 91-98. |
17 | Jayanthi M, Lavanya T, Saradha N A, et al. Superior photocatalytic performance of CeO2 nanoparticles and reduced graphene oxide nanocomposite prepared by low cost co-precipitation method[J]. J. Nanosci. Nanotechno., 2018, 18(5): 3257-3265. |
18 | Hu F F, Zhao S P, Yin X Q. Size-controllable synthesis of CeO2 nanoparticles via microwave assisted acrylamide gel method and their fluorescent properties[J]. J. Mater. Sci.-Mater. El., 2018, 29(19): 16747-16757. |
19 | Ji Z Y, Shen X P, Li M Z, et al. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties[J]. Nanotechnology, 2013, 24(13): 115603. |
20 | Li L, Chen Y S. Preparation of nanometer-scale CeO2 particles via a complex thermo-decomposition method[J]. Met. Sci. Eng. A-Struct., 2005, 406(1/2): 180-185. |
21 | Bugayeva N, Robinson J. Synthesis of hydrated CeO2 nanowires and nanoneedles[J]. Mater. Sci. Tech.-Lond., 2007, 23(2): 237-241. |
22 | Sharafeldin M A, Grof G. Evacuated tube solar collector performance using CeO2/water nanofluid[J]. J. Clean. Prod., 2018, 185: 347-356. |
23 | Sharafeldin M A, Grof G. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation [J]. Energy Convers. Manage., 2018, 155: 32-41. |
24 | Stalin P M J, Arjunan T V, Matheswaran M M, et al. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector[J]. J. Therm. Anal. Calorim., 2019, 135: 29-44. |
25 | Mohan V M, Sajeeb A M. Improving the efficiency of DASC by adding CeO2/CuO hybrid nanoparticles in water [J]. Adv. Sci. Lett., 2018, 24(8): 5651-5656. |
26 | Sundar L S, Syam K V. Heat transfer enhancements of low volume concentration Al2O3 nanofluid and with longitudinal strip inserts in a circular tube [J]. Int. J. Heat Mass Transfer, 2010, 53(19/20): 4280-4286. |
27 | Kiyomura I S, Manetti L L, Cunha A P. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water[J]. Int. J. Heat Mass Transfer, 2017, 106: 666-674. |
28 | Kang W, Shin Y, Cho H. Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water[J]. J. Mech. Sci. Technol., 2019, 33(3): 1477-1485. |
29 | Khoshvaght A M, Arani-Lahtari Z K A, Morteza A L Z. Proposing new configurations for twisted square channel (TSC): nanofluid as working fluid [J]. Appl. Phys. Lett., 2016, 108: 709-719 |
30 | 李占双, 闫慧君, 尤佳, 等. 水热法合成纳米CeO2 及其光催化性质研究[J]. 化学试剂, 2008, 30(4): 262-264+268. |
Li Z S, Yan H J, You J, et al. Synthesis of nano-CeO2 by hydrothermal method and its photocatalytic properties [J]. Chemical Reagent, 2008, 30(4): 262-264+268. | |
31 | 樊小伟, 梁小平, 王荣涛. 溶胶-凝胶法制备纳米CeO2晶体[J]. 化工新型材料, 2008, 36(9): 79-81. |
Fan X W, Liang X P, Wang R T. The preparation of nano CeO2 by sol-gel method[J]. New Chemical Materials, 2008, 36(9): 79-81. | |
32 | Karimzadehkhouei M, Shojaeian M, Sendur K, et al. The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling [J]. Int. J. Heat Mass Transfer, 2017, 109: 157-166. |
33 | Cole R. Boiling nucleation[J]. Advances in Heat Transfer, 1974, 10: 85-166. |
34 | 庄大伟, 杨艺菲, 胡海涛, 等. 竖直翅片间液桥体积计算模型[J]. 化工学报, 2016, 67(10): 4080-4085. |
Zhuang D W, Yang Y F, Hu H T, et al. Model for calculating water bridge volume retained between vertical fins[J]. CIESC Journal, 2016, 67(10): 4080-4085. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[12] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[13] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[14] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[15] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 544
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||