1 |
Chen Y, Li N, Wang L, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells[J]. Nature Communications, 2019, 10(1): 1112.
|
2 |
Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 2014, 26(27):4653-4658.
|
3 |
陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820.
|
|
Chen C, Yang X C, Liu W. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal, 2017, 68(3): 811-820.
|
4 |
Ha S T, Liu X, Zhang Q, et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high‐performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844.
|
5 |
Yang Z, Rajagopal A, Jen A K Y. Ideal bandgap organic-inorganic hybrid perovskite solar cells[J]. Advanced Materials, 2017, 29(47): 1704418.
|
6 |
Zhang H, Liao Q, Wu Y, et al. 2D Ruddlesden-Popper perovskites microring laser array[J]. Advanced Materials, 2018, 30(15): 1706186.
|
7 |
Stylianakis M M, Maksudov T, Panagiotopoulos A, et al. Inorganic and hybrid perovskite based laser devices: a review[J]. Materials, 2019, 12(6): 859.
|
8 |
Liu P, He X, Ren J, et al. Organic–inorganic hybrid perovskite nanowire laser arrays[J]. ACS Nano, 2017, 11(6): 5766-5773.
|
9 |
Liang Y, Shang Q, Wei Q, et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness[J]. Advanced Materials, 2019, 31(39): 1903030.
|
10 |
Li M, Gao Q, Liu P, et al. Amplified spontaneous emission based on 2D Ruddlesden–Popper perovskites[J]. Advanced Functional Materials, 2018, 28(17): 1707006.
|
11 |
Li S X, Zhang G P, Xia H, et al. Template-confined growth of Ruddlesden-Popper perovskite micro-wire arrays for stable polarized photodetectors[J]. Nanoscale, 2019, 11(39): 18272-18281.
|
12 |
Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIxperovskite nanocrystal photodetector[J]. Rsc Advances, 2016, 6(69): 65252-65256.
|
13 |
Deng W, Huang L, Xu X, et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement[J]. Nano Letters, 2017, 17(4): 2482-2489.
|
14 |
Dou L, Yang Y M, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5(1): 1-6.
|
15 |
Lee Y, Kwon J, Hwang E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 2015, 27(1): 41-46.
|
16 |
Huo C, Cai B, Yuan Z, et al. Two‐dimensional metal halide perovskites: theory, synthesis, and optoelectronics[J]. Small Methods, 2017, 1(3): 1600018.
|
17 |
Ahmadi M, Wu T, Hu B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics[J]. Advanced Materials, 2017, 29(41): 1605242.
|
18 |
Quan L N, Rand B P, Friend R H, et al. Perovskites for next-generation optical sources[J]. Chemical Reviews, 2019, 119(12): 7444-7477.
|
19 |
Lv W, Li L, Xu M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Advanced Materials, 2019, 31(28): 1900682.
|
20 |
Cao D H, Stoumpos C C, Farha O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society, 2015, 137(24): 7843-7850.
|
21 |
Leng K, Abdelwahab I, Verzhbitskiy I, et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation[J]. Nature Materials, 2018, 17(10): 908-914.
|
22 |
Abdelwahab I, Grinblat G, Leng K, et al. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances[J]. ACS Nano, 2018, 12(1): 644-650.
|
23 |
Peng B, Li Q, Liang X, et al. Valley polarization of trions and magnetoresistance in heterostructures of MoS2 and yttrium iron garnet[J]. ACS Nano, 2017, 11(12): 12257-12265.
|
24 |
Schaibley J R, Yu H, Clark G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1(11): 1-15.
|
25 |
Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498.
|
26 |
Terent'ev Y V, Danilov S N, Loher J, et al. Magneto-photoluminescence of InAs/InGaAs/InAlAs quantum well structures[J]. Applied Physics Letters, 2014, 104(10): 101111.
|
27 |
Aivazian G, Gong Z, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2[J]. Nature Physics, 2015, 11(2): 148-152.
|
28 |
Stier A V, McCreary K M, Jonker B T, et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla[J]. Nature Communications, 2016, 7(1): 1-8.
|
29 |
Zhang C, Sun D, Sheng C X, et al. Magnetic field effects in hybrid perovskite devices[J]. Nature Physics, 2015, 11(5): 427-434.
|
30 |
Li M, Li L, Mukherjee R, et al. Magnetodielectric response from spin–orbital interaction occurring at interface of ferromagnetic Co and organometal halide perovskite layers via Rashba effect[J]. Advanced Materials, 2017, 29(6): 1603667.
|
31 |
Stoumpos C C, Soe C M M, Tsai H, et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16[J]. Chem., 2017, 2(3): 427-440.
|