CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3490-3499.DOI: 10.11949/0438-1157.20200291
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yi SHEN1(),Zeyu ZHANG1,Yitao LIANG1,Yonghua HUANG1(),Rui ZHUAN2,Liang ZHANG2,Shaohua BU2
Received:
2020-03-20
Revised:
2020-05-20
Online:
2020-08-05
Published:
2020-08-05
Contact:
Yonghua HUANG
沈逸1(),张泽宇1,梁益涛1,黄永华1(),耑锐2,张亮2,卜劭华2
通讯作者:
黄永华
作者简介:
沈逸(1999—),男,硕士研究生,基金资助:
CLC Number:
Yi SHEN, Zeyu ZHANG, Yitao LIANG, Yonghua HUANG, Rui ZHUAN, Liang ZHANG, Shaohua BU. Realization of microgravity environment by magnetic compensation and study on interior corner flow of magnetic fluid in microgravity[J]. CIESC Journal, 2020, 71(8): 3490-3499.
沈逸, 张泽宇, 梁益涛, 黄永华, 耑锐, 张亮, 卜劭华. 磁补偿微重力环境实现及磁流体微重力内角流动研究[J]. 化工学报, 2020, 71(8): 3490-3499.
Add to citation manager EndNote|Ris|BibTeX
参数 | 外线圈 | 内线圈 |
---|---|---|
内径/mm | 360 | 140 |
外径/mm | 484 | 264 |
厚度/mm | 60 | 55 |
上下两个线圈间距/mm | 220 | 187 |
Table 1 Geometry of the coils
参数 | 外线圈 | 内线圈 |
---|---|---|
内径/mm | 360 | 140 |
外径/mm | 484 | 264 |
厚度/mm | 60 | 55 |
上下两个线圈间距/mm | 220 | 187 |
磁补偿区域内 平均梯度/(T/m) | 实测纵向 非均匀度/% | I1/A | I2/A |
---|---|---|---|
0.25~0.30 | 6.5 | 32.8 | 74.9 |
0.55~0.60 | 5.4 | 65.2 | 74.9 |
0.80~0.85 | 4.6 | 97.3 | 74.9 |
Table 2 Magnetic field gradient calibration
磁补偿区域内 平均梯度/(T/m) | 实测纵向 非均匀度/% | I1/A | I2/A |
---|---|---|---|
0.25~0.30 | 6.5 | 32.8 | 74.9 |
0.55~0.60 | 5.4 | 65.2 | 74.9 |
0.80~0.85 | 4.6 | 97.3 | 74.9 |
1 | 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009. |
Wang L, Li Y Z, Ma Y, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. | |
2 | Chato D J. Cryogenic technology development for explorations missions[R]. AIAA 2007-0953, NASA / TM-2007-214824, 2007. |
3 | Doherty M, Joseph G, Salerno L, et al. Cryogenic fluid management technology for moon and mars missions[R]. NASA /TM-2010-216070, AIAA 2009-6532, 2009. |
4 | 张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3): 125-131+141. |
Zhang T P. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogen, 2006, 12(3): 125-131+141. | |
5 | Tegart J R, Driscoll S L, Hastings L J. Fluid acquisition and resupply experiments on space shuttle flights STS-53 and STS-57[R]. Alabama, USA: Marshall Space Flight Center, NASA /TP-2011-216465, 2011. |
6 | Nardin C L, Weislogel M M. Capillary driven flows along differentially wetted interior corners[R]. NASA TM-213799, 2005. |
7 | Concus P, Finn R. On the behavior of a capillary surface in a wedge[J]. Proceedings of the National Academy of Sciences, 1969, 63(2): 292-299. |
8 | Weislogel M M, Sech L. Capillary flow in an interior corner[J]. Journal of Fluid Mechanics, 1998, 373: 349-378. |
9 | Weislogel M M. Capillary flow in cylindrical containers of irregular polygonal section[R]. AIAA 2001-0765, 2000. |
10 | Weislogel M M. Capillary flow in containers of polygonal section: theory and experiment[R]. NASA/CR-2001-210900, 2001. |
11 | Weislogel M M. Some analytical tools for fluids management in space: isothermal capillary flows along interior corners[J]. Advances in Space Research, 2003, 32(2): 163-170. |
30 | Zhang Z Y, Huang Y H, Liang Y T, et al. Impact of magnetic force inhomogeneity on free surface of liquid oxygen under magnetically compensated microgravity[J]. Vacuum & Cryogenics, 2019, 25(6): 372-378. |
12 | Geoffrey M, Norman R M. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J]. Journal of Colloid and Interface Science, 1991, 141(1): 262-274. |
13 | Dong M, Chatzis I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube[J]. Journal of Colloid and Interface Science, 1995, 172(2): 278-288. |
14 | 魏月兴, 陈小前, 黄奕勇. 内角流动及其在卫星贮箱设计中的应用[J]. 中国科学: 技术科学, 2011, 41(9): 1218-1224. |
Wei Y X, Chen X Q, Huang Y Y. Interior corner flow theory and its application to the satellite propellant management device design[J]. Scientia Sinica Techologica, 2011, 41(9): 1218-1224. | |
15 | 李京浩, 陈小前, 黄奕勇. 基于内角流动的板式表面张力贮箱内推进剂流动过程研究[J]. 国防科技大学学报, 2012, 34(4): 18-21. |
Li J H, Chen X Q, Huang Y Y. A study of propellant flow in the vane-type surface tension tank based on interior corner flow[J]. Journal of National University of Defense Technology, 2012, 34(4): 18-21. | |
16 | 周宏伟, 王林伟, 徐升华, 等. 微重力条件下与容器连通的毛细管中的毛细流动研究[J]. 物理学报, 2015, 64(12): 124703 |
Zhou H W, Wang L W, Xu S H, et al. Capillary-driven flow in tubes connected to the containers under microgravity condition[J]. Acta Physica Sinica, 2015, 64(12): 124703. | |
17 | 徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702. |
Xu S H, Zhou H W, Wang C X, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702. | |
18 | Wang C X, Xu S H, Sun Z W, et al. A study of the influence of initial liquid volume on the capillary in interior corner under microgravity[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10): 1801-1807. |
19 | Xu S H, Wang C X, Sun Z W, et al. The capillary flow and reorientation of liquid-gas surface in interior corner under microgravity[J]. Journal of the Japan Society of Microgravity Application, 2007, 24(3): 275-278. |
20 | Ransohoff T C, Radke C J. Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore[J]. Journal of Colloid and Interface Science, 1988, 121(2): 392-401. |
21 | Concus P, Finn R. Dichotomous behavior of capillary surface in zero gravity[J].Microgravity Science and Technology, 1990, 1(3): 87-92. |
22 | Chen Y K, Weislogel M M, Nardin C L. Capillary-driven flows along rounded interior corners[J]. Journal of Fluid Mechanics, 2006, 566: 235-271. |
23 | Chen Y K, Weislogel M M, Bolleddula D A. Capillary flow in cylindrical containers with rounded interior corners[C]//45th AIAA Aerospace Science Meeting and Exhibit. Reno, 2007. |
24 | 李永强, 刘玲. 微重力下变内角毛细驱动流研究[J]. 物理学报, 2014, 63(21): 214704. |
Li Y Q, Liu L. A study of capillary flow in variable interior corners under microgravity[J]. Acta Physica Sinica, 2014, 63(21): 214704. | |
25 | 刘玲. 微重力下扇形内角处的毛细流动研究[D]. 沈阳: 东北大学, 2014. |
Liu L. Study of capillary flow in fan-shaped interior corner under microgravity[D]. Shenyang: Northeastern University, 2014. | |
26 | 李永强, 刘玲, 张晨辉, 等. 微重力环境下无限长柱体内角毛细流动解析近似解研究[J]. 物理学报, 2013, 62(2): 024701. |
Li Y Q, Liu L, Zhang C H, et al. Analytical approximations for capillary flow in interior corners of infinite long cylinder under microgravity[J]. Acta Physica Sinica, 2013, 62(2): 024701. | |
27 | 李永强, 张晨辉, 刘玲, 等. 微重力下圆管毛细流动解析近似解研究[J]. 物理学报, 2013, 62(4): 044701. |
Li Y Q, Zhang C H, Liu L, et al. The analytical approximate solutions of capillary flow in circular tubes under microgravity[J]. Acta Physica Sinica, 2013, 62(4): 044701. | |
28 | 宋新昌. 亥姆霍兹线圈及麦克斯韦线圈磁场分布及均匀性比较[J]. 磁性材料及器件, 2016, 47(5): 16-18+77. |
Song X C. Comparison of magnetic field distribution and homogeneity between Helmholtz coil and Maxwell coil[J]. Journal of Magnetic Materials and Devices, 2016, 47(5): 16-18+77. | |
29 | Quettier L, Félice H, Mailfert A, et al. Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts[J]. European Physical Journal Applied Physics, 2005, 32(3): 167-175. |
30 | 张泽宇, 黄永华, 梁益涛, 等. 磁场力非均匀度对液氧磁补偿微重力自由界面的影响[J]. 真空与低温, 2019, 25(6): 372-378. |
[1] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[2] | Chuxin CHANG, Liting XU, Jialun YIN, Xian LUO, Hongwei JIA. Study on low voltage electrowetting behavior under immersion state [J]. CIESC Journal, 2022, 73(4): 1673-1682. |
[3] | ZHOU Tong, CHEN Jingjing, TU Chunzhao, JI Xiaoyan, LU Xiaohua, WANG Changsong. Preparation of dopamine super-hydrophobic coating in pipeline [J]. CIESC Journal, 2021, 72(7): 3814-3822. |
[4] | Yanpeng WU, Wei ZHAO, Fengjun CHEN. Experimental study on air filtration performance of nanofiber membrane with hydrophilic and hydrophobic function at different relative humidity [J]. CIESC Journal, 2020, 71(S1): 471-478. |
[5] | Leigang ZHANG, Bo XU, Juan SHI, Zhenqian CHEN. Experimental study on condensation of FC-72 in narrow rectangular channel with ellipse-shape pin fins in microgravity [J]. CIESC Journal, 2019, 70(S1): 45-53. |
[6] | ZHU Jilong, SHI Wanyuan. Marangoni instability phenomena in evaporating sessile droplet at constant contact angle mode [J]. CIESC Journal, 2018, 69(S1): 53-57. |
[7] | GAO Ming, KONG Peng, ZHANG Lixin. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes [J]. CIESC Journal, 2018, 69(7): 2979-2984. |
[8] | QI Chao, SUN Peijie, ZHUAN Rui, WANG Wen. Simulation of vaporization process inside cryogenic liquid oxygen tank for long-term storage in orbit [J]. CIESC Journal, 2016, 67(S2): 58-63. |
[9] | TANG Haida, ZHANG Tao, LIU Xiaohua, JIANG Yi. Size of departing condensate droplets from radiant cooling ceiling [J]. CIESC Journal, 2016, 67(9): 3552-3558. |
[10] | ZHUANG Dawei, YANG Yifei, HU Haitao, DING Guoliang. Visualization and prediction model on shape of liquid bridge [J]. CIESC Journal, 2016, 67(6): 2224-2229. |
[11] | WEI Jinjia, ZHANG Yonghai. Review of enhanced boiling heat transfer over micro-pin-finned surfaces [J]. CIESC Journal, 2016, 67(1): 97-108. |
[12] | YU Mingzhi, FAN Xuejing, HU Aijuan. Experimental study and mechanism analysis of liquid morphologies in particle packing porous medium [J]. CIESC Journal, 2015, 66(7): 2450-2455. |
[13] | WU Pei, LUO Xuegang, LI Ke, ZHANG Sizhao. Photocatalytic degradation of LDPE film with Fe-Sr2Bi2O5 photocatalyst under UV and visible light irradiation [J]. CIESC Journal, 2015, 66(5): 1939-1946. |
[14] | JIANG Guilin, ZHANG Chengwu, GUAN Ning, QIU Delai, LIU Zhigang. Flow characteristics of water in hydrophobic micro cylinders group with different contact angles [J]. CIESC Journal, 2015, 66(5): 1704-1709. |
[15] | HUANGFU Jie, LI Qian, LI Jun, LI Chun. Pathway analysis of recombinant Escherichia coli during protein production process under simulated microgravity [J]. CIESC Journal, 2015, 66(12): 4960-4965. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||