[1] |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2011[M]. 北京:中国建筑工业出版社, 2011:2-6. Building Energy Research Center of Tsinghua University. 2011 Annual Report on China Building Energy Efficiency[M]. Beijing:China Architecture & Building Press, 2011:2-6.
|
[2] |
PEREZ-LOMBARD L, ORTIZ J, POUT C. A review on buildings energy consumption information[J]. Energy Build., 2008, 40(3):394-398.
|
[3] |
MEMON R A, CHIRARATTANANON S, VANGTOOK P. Thermal comfort assessment and application of radiant cooling:a case study[J]. Building and Environment, 2008, 43(7):1185-1196.
|
[4] |
SUI X, ZHANG X. Effects of radiant terminal and air supply terminal devices on energy consumption of cooling load sharing rate in residential buildings[J]. Energy Build., 2012, 49:499-508.
|
[5] |
CHIANG W H, WANG C Y, HUANG J S. Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region[J]. Building and Environment, 2012, 48:113-127.
|
[6] |
TIAN Z, LOVE J A. Energy performance optimization of radiant slab cooling using building simulation and field measurements[J]. Energy Build., 2009, 41(3):320-330.
|
[7] |
RHEE K N, KIM K W. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment[J]. Building and Environment, 2015, 91:166-190.
|
[8] |
YIN Y L, WANG R Z, ZHAI X Q, et al. Experimental investigation on the heat transfer performance and water condensation phenomenon of radiant cooling panels[J]. Building and Environment, 2014, 71:15-23.
|
[9] |
TANG H, LIU X H. Experimental study of dew formation on metal radiant panels[J]. Energy Build., 2014, 85:515-523.
|
[10] |
DIMITRAKOPOULOS P, HIGDON J J L. On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces[J]. J. Fluid Mech., 1999, 395:181-209.
|
[11] |
BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Phys. Rev. Lett., 2009, 103(18):184501.
|
[12] |
FENG J, QIN Z, YAO S. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces[J]. Langmuir, 2012, 28(14):6067-6075.
|
[13] |
LV C, HAO P, YAO Z, et al. Condensation and jumping relay of droplets on lotus leaf[J]. Appl. Phys. Lett., 2013, 103(2):021601.
|
[14] |
王四芳, 兰忠, 彭本利, 等. 超疏水表面液滴合并诱导弹跳现象分析[J]. 化工学报, 2012, 63(S1):17-22. WANG S F, LAN Z, PENG B L, et al. Characteristics of droplet coalescence and self-propelling on superhydrophobic surface[J]. CIESC Journal, 2012, 63(S1):17-22.
|
[15] |
王四芳, 兰忠, 王爱丽, 等. 超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析[J]. 化工学报, 2010, 61(3):607-611. WANG S F, LAN Z, WANG A L, et al. Dropwise condensation of steam and steam-air mixture on super-hydrophobic surfaces[J]. CIESC Journal, 2010, 61(3):607-611.
|
[16] |
RYKACZEWSKI K, PAXSON A T, ANAND S, et al. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces[J]. Langmuir, 2013, 29(3):881-891.
|
[17] |
CHEN X, KONG L, DONG D, et al. Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem. C, 2009, 113(14):5396-5401.
|
[18] |
GAO L, MCCARTHY T J. Wetting 101°[J]. Langmuir, 2009, 25(24):14105-14115.
|
[19] |
WANG F C, YANG F, ZHAO Y P. Size effect on the coalescence-induced self-propelled droplet[J]. Appl. Phys. Lett., 2011, 98(5):053112.
|
[20] |
FUCHIKAMI N, ISHIOKA S, KIYONO K. Simulation of a dripping faucet[J]. J. Phys. Soc. Japan, 1999, 68(4):1185-1196.
|
[21] |
PITTS E. The stability of pendent liquid drops(2):Axial symmetry[J]. J. Fluid Mech., 1974, 63(3):487-508.
|