[1] |
ZHAO R, CHENG W L, LIU Q N, et al. Study on heat transfer performance of spray cooling:model and analysis[J]. Heat Mass Transfer, 2010, 46(8/9):821-829.
|
[2] |
BOULET P, TISSOT J, TRINQUET F, et al. Enhancement of heat exchanges on a condenser using an air flow containing water droplets[J]. Applied Thermal Engineering, 2013, 50(1):1164-1173.
|
[3] |
REN M S, SWEELSSEN J, GROSSIORD N, et al. Inkjet printing technology for OPV applications[J]. Imaging Sci. Technol., 2012, 56(4):1-5.
|
[4] |
DENG W W, GOMEZ A. Electrospray cooling for microelectronics[J]. Int. J. Heat Mass Transfer, 2011, 54(11):2270-2275.
|
[5] |
DUGAS V, BROUTIN J, SOUTEYRAND E. Droplet evaporation study applied to DNA chip manufacturing[J]. Langmuir, 2005, 21(20):9130-9136.
|
[6] |
CHOPRA M, LI L, HU H, et al. DNA molecular configurations in an evaporating droplet near a glass surface[J]. Journal of Rheology, 2003, 47(5):1111-1132.
|
[7] |
KARLSSON S, RASMUSON A, BJORN I N, et al. Characterization and mathematical modelling of single fluidised particle coating[J]. Powder Technology, 2011, 207(1/2/3):245-254.
|
[8] |
KO S H, CHUNG J, HOTZ N, et al. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication[J]. Journal of Micromechanics & Microengineering, 2010, 20(12):125010.
|
[9] |
SCHIRMER N C, STRÖHLE S, TIWARI M K, et al. Correction:on the principles of printing sub-micrometer 3D structures from dielectric-liquid-based colloids[J]. Advanced Functional Materials, 2012, 22(6):1111-1111.
|
[10] |
SIRRINGHAUS H, KAWASE T, FRIEND R H, et al. High resolution inkjet printing of all-polymer transistor circuits[J]. Science, 2001, 26(7):539-543.
|
[11] |
SEFIANE K. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications[J]. Journal of Bionic Engineering, 2010, 7(4):S82-S93.
|
[12] |
SOBAC B, BRUTIN D. Desiccation of a sessile drop of blood:cracks formation and delamination[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 448(4):34-44.
|
[13] |
ZEID W B, VICENTE J, BRUTIN D. Influence of evaporation rate on cracks' formation of a drying drop of whole blood[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 432(432):139-146.
|
[14] |
ZEID W B, BRUTIN D. Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 430(430):1-7.
|
[15] |
张能力,徐友仁. 水平面上蒸发滴内的流动微结构及Bénard细胞流[J]. 工程热物理学报, 1985, 6:361-365. ZHANG N L,XU Y R. Flow microstructure and Bénard cell flow in evaporation drops on flat substrate[J]. Journal of Engineering Thermophysics, 1985, 6:361-365.
|
[16] |
ZHANG N L, YANG W J. Microstructure of flow inside minute drops evaporating on a surface[J]. Heat Transfer, 1983, 105:908-910.
|
[17] |
SEFIANE K, MOFFAT J R, MATAR O K, et al. Self-excited hydrothermal waves in evaporating sessile drops[J]. Appl. Phys. Lett., 2008, 93(7):4103-4103.
|
[18] |
SEFIANE K, STEINCHEN A, MOFFAT R. On hydrothermal waves observed during evaporation of sessile droplets[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 365(1):95-108.
|
[19] |
SEFIANE K, FUKATANI Y, TAKATA Y, et al. Thermal patterns and hydrothermal waves (HTWs) in volatile drops[J]. Langmuir, 2013, 29(31):9750-9760.
|
[20] |
SOBAC B, BRUTIN D. Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate[J]. Physics of Fluids, 2012, 24(3):032103.
|
[21] |
ZHONG X, DUAN F. Stable hydrothermal waves at steady state evaporating droplet surface[J]. Scientific Reports, 2017, 7:16219.
|
[22] |
PICKNETT R G, BEXON R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science, 1977, 61(2):336-350.
|
[23] |
BIRDI K S, VU D T, WINTER A. Interfacial tension of liquids from the height and contact angle of a single sessile drop[J]. Colloid and Polymer Science, 1988, 266(9):849-854.
|
[24] |
ROWAN S M, NEWTON M I, MCHALE G. Evaporation of microdroplets and the wetting of solid surfaces[J]. The Journal of Physical Chemistry, 1995, 99(35):13268-13271.
|
[25] |
贾沂伟, 石万元, 王天石. 加热基板上硅油液滴蒸发诱发的Marangoni对流失稳现象实验研究[J]. 工程热物理学报, 2017, 9:2001-2004. JIA Y W, SHI W Y, WANG T S. Experiment investigation on Marangoni convection instability induced by evaporation in a sessile droplet of silicone oil on a heated substrate[J]. Journal of Engineering Thermophysics, 2017, 9:2001-2004.
|
[26] |
DAVID S, SEFIANE K, TADRIST L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 298(1):108-114.
|
[27] |
HU D, WU H. Numerical study and predictions of evolution behaviors of evaporating pinned droplets based on a comprehensive model[J]. International Journal of Thermal Sciences, 2015, 96:149-159.
|
[28] |
BRUTIN D, SEMENOV S, CARLE F, et al. 3D unsteady computations of evaporative instabilities in a sessile drop of ethanol on a heated substrate[J]. Applied Physics Letters, 2017, 111(24):241602.
|
[29] |
SHI W Y, TANG K Y, MA J N. et al. Marangoni convection instability in a sessile droplet with low volatility on heated substrate[J]. International Journal of Thermal Sciences, 2017, 117:274-286.
|
[30] |
VANHOOK S J, SCHATZ M F, MCCORMICK W D, et al. Long-wavelength instability in surface-tension-driven Bénard convection[J]. Phys. Rev. Lett., 1995, 75(24):4397.
|