CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3556-3564.DOI: 10.11949/0438-1157.20200172
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Qianqian LI1(),Siyang TANG1(),Hairong YUE1,2,Changjun LIU1,Kui MA1,Shan ZHONG1,Bin LIANG1,2
Received:
2020-02-24
Revised:
2020-05-22
Online:
2020-08-05
Published:
2020-08-05
Contact:
Siyang TANG
李倩倩1(),唐思扬1(),岳海荣1,2,刘长军1,马奎1,钟山1,梁斌1,2
通讯作者:
唐思扬
作者简介:
李倩倩(1994—),女,硕士研究生,基金资助:
CLC Number:
Qianqian LI, Siyang TANG, Hairong YUE, Changjun LIU, Kui MA, Shan ZHONG, Bin LIANG. Study on the photocatalytic oxidative dehydrogenation of ethane with CO2 over Pd-Rh /TiO2 catalyst[J]. CIESC Journal, 2020, 71(8): 3556-3564.
李倩倩, 唐思扬, 岳海荣, 刘长军, 马奎, 钟山, 梁斌. Pd-Rh/TiO2光催化CO2氧化乙烷脱氢研究[J]. 化工学报, 2020, 71(8): 3556-3564.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 活性/(μmol·(g cat)-1·h-1) | |||
---|---|---|---|---|
H2 | CH4 | C2H4 | CO | |
Pd | 122.2 | 126.1 | 226.0 | 74.8 |
1Pd-1Pt | 461.2 | 214.9 | 222.9 | trace |
1Pd-1Ni | 150.2 | 179.6 | 134.3 | trace |
1Pd-1Fe | 56.1 | 130.9 | 91.4 | 18.3 |
1Pd-1Cu | 417.1 | 149.9 | 294.2 | 25.2 |
1Pd-1Ru | 88.7 | 134.2 | 273.9 | 96.3 |
1Pd-1Ag | 798.3 | 134.2 | 510.7 | 23.8 |
1Pd-1Rh | 467.6 | 200.3 | 428.8 | 190.2 |
Table 1 Performance of oxidative dehydrogenation of ethane in the presence of CO2 over Pd-M /TiO2 catalysts
催化剂 | 活性/(μmol·(g cat)-1·h-1) | |||
---|---|---|---|---|
H2 | CH4 | C2H4 | CO | |
Pd | 122.2 | 126.1 | 226.0 | 74.8 |
1Pd-1Pt | 461.2 | 214.9 | 222.9 | trace |
1Pd-1Ni | 150.2 | 179.6 | 134.3 | trace |
1Pd-1Fe | 56.1 | 130.9 | 91.4 | 18.3 |
1Pd-1Cu | 417.1 | 149.9 | 294.2 | 25.2 |
1Pd-1Ru | 88.7 | 134.2 | 273.9 | 96.3 |
1Pd-1Ag | 798.3 | 134.2 | 510.7 | 23.8 |
1Pd-1Rh | 467.6 | 200.3 | 428.8 | 190.2 |
催化剂① | Pd负载量②/ %(质量) | Rh负载量②/ %(质量) | 活性(CO2下)/(μmol·(g cat)-1·h-1)③ | 活性(Ar下)/(μmol·(g cat) -1·h-1)④ | |||||
---|---|---|---|---|---|---|---|---|---|
H2 | CH4 | C2H4 | CO | H2 | CH4 | C2H4 | |||
Pd | 0.44 | 0 | 122.2 | 126.1 | 226.0 | 74.8 | 760.7 | 155.6 | 49.8 |
3Pd-1Rh | 0.25 | 0.16 | 284.9 | 57.9 | 284.6 | 134.1 | 947.0 | 144.7 | 68.1 |
1Pd-1Rh | 0.21 | 0.39 | 467.6 | 200.3 | 428.8 | 190.2 | 1102.9 | 134.8 | 72.6 |
1Pd-3Rh | 0.07 | 0.34 | 427.4 | 47.4 | 336.4 | 155.5 | 1533.8 | 136.8 | 161.6 |
Rh | 0.70 | 0 | 190.9 | 48.6 | 170.1 | 269.7 | 1908.9 | 147.8 | 43.9 |
P25 | —⑤ | — | 0.3 | 16.7 | 10.1 | trace | — | — | — |
Table 2 Ethane dehydrogenation performance under CO2 and Ar conditions with different metal ratios of Pd-Rh/TiO2
催化剂① | Pd负载量②/ %(质量) | Rh负载量②/ %(质量) | 活性(CO2下)/(μmol·(g cat)-1·h-1)③ | 活性(Ar下)/(μmol·(g cat) -1·h-1)④ | |||||
---|---|---|---|---|---|---|---|---|---|
H2 | CH4 | C2H4 | CO | H2 | CH4 | C2H4 | |||
Pd | 0.44 | 0 | 122.2 | 126.1 | 226.0 | 74.8 | 760.7 | 155.6 | 49.8 |
3Pd-1Rh | 0.25 | 0.16 | 284.9 | 57.9 | 284.6 | 134.1 | 947.0 | 144.7 | 68.1 |
1Pd-1Rh | 0.21 | 0.39 | 467.6 | 200.3 | 428.8 | 190.2 | 1102.9 | 134.8 | 72.6 |
1Pd-3Rh | 0.07 | 0.34 | 427.4 | 47.4 | 336.4 | 155.5 | 1533.8 | 136.8 | 161.6 |
Rh | 0.70 | 0 | 190.9 | 48.6 | 170.1 | 269.7 | 1908.9 | 147.8 | 43.9 |
P25 | —⑤ | — | 0.3 | 16.7 | 10.1 | trace | — | — | — |
1 | Baños R, Manzano-Agugliaro F, Montoya F G, et al. Optimization methods applied to renewable and sustainable energy: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1753-1766. |
2 | Porosoff M D, Myint M N Z, Kattel S, et al. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation [J]. Angewandte Chemie International Edition, 2015, 54(51): 15501-15505. |
3 | Mimura N, Takahara I, Inaba M, et al. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 as an oxidant [J]. Catalysis Communications, 2002, 3(6): 257-262. |
4 | Shi L, Wang Y, Yan B, et al. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts [J]. Chemical Communications, 2018, 54(78): 10936-10946. |
5 | Ayoub M, Abdullah A Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2671-2686. |
6 | Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes [J]. Energy, 2006, 31(4): 425-451. |
7 | Roy S C, Varghese O K, Paulose M, et al. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons [J]. ACS Nano, 2010, 4(3): 1259-1278. |
8 | Rahmani F, Haghighi M, Amini M. The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene [J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 142-155. |
9 | Cheng Y, Zhang F, Zhang Y, et al. Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite [J]. Chinese Journal of Catalysis, 2015, 36(8): 1242-1248. |
10 | Shen Z, Liu J, Xu H, et al. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2 [J]. Applied Catalysis A: General, 2009, 356(2): 148-153. |
11 | Gärtner C A, van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects [J]. ChemCatChem, 2013, 5(11): 3196-3217. |
12 | Cheng Y, Miao C, Hua W, et al. Cr/ZSM-5 for ethane dehydrogenation: enhanced catalytic activity through surface silanol [J]. Applied Catalysis A: General, 2017, 532: 111-119. |
13 | Skoufa Z, Heracleous E, Lemonidou A A. On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies [J]. Journal of Catalysis, 2015, 322: 118-129. |
14 | Zhang R, Wang H, Tang S, et al. Photocatalytic oxidative dehydrogenation of ethane using CO2 as a soft oxidant over Pd/TiO2 catalysts to C2H4 and syngas [J]. ACS Catalysis, 2018, 8(10): 9280-9286. |
15 | Leung D Y C, Fu X, Wang C, et al. Hydrogen production over titania-based photocatalysts [J]. ChemSusChem, 2010, 3(6): 681-694. |
16 | Wang W N, An W J, Ramalingam B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals [J]. Journal of the American Chemical Society, 2012, 134(27): 11276-11281. |
17 | Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293: 269-271. |
18 | Chen X, Liu L, Yu P, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals [J]. Science, 2011, 331: 746-750. |
19 | Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges [J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661. |
20 | Foo W J, Zhang C, Ho G W. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production [J]. Nanoscale, 2013, 5(2): 759-764. |
21 | Wang C, Thompson R, Ohodnicki P R, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts [J]. Journal of Materials Chemistry, 2011, 21: 13452-13457. |
22 | Li X, Zhuang Z, Li W, et al. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2 [J]. Applied Catalysis A: General, 2012, (s429/430): 31-38. |
23 | Murdoch M, Waterhouse G, Nadeem M, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nature Chemistry, 2011, 3: 489-492. |
24 | Bera S, Lee J E, Rawal S B, et al. Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2 [J]. Applied Catalysis B: Environmental, 2016, 199: 55-63. |
25 | Linic S, Christopher P, Ingram D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10: 911-921. |
26 | Ide Y, Matsuoka M, Ogawa M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate [J]. Journal of the American Chemical Society, 2010, 132: 16762-16764. |
27 | Yu L, Li D. Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2 [J]. Catalysis Science & Technology, 2017, 7(3): 635-640. |
28 | Konda S K, Amiri M, Chen A. Photoassisted deposition of palladium nanoparticles on carbon nitride for efficient oxygen reduction [J]. The Journal of Physical Chemistry C, 2016, 120(27): 14467-14473. |
29 | Hou W, Cronin S B. A review of surface plasmon resonance-enhanced photocatalysis [J]. Advanced Functional Materials, 2013, 23(13): 1612-1619. |
30 | Zhao J, Jin R. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters [J]. Nano Today, 2018, 18: 86-102. |
31 | Li G, Wang X, Yan L, et al. PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26116-26126. |
32 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5 [J]. Fuel, 2018, 218: 33-40. |
33 | Feng X, Bo X, Guo L. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions [J]. Journal of Power Sources, 2018, 389: 249-259. |
34 | Zhang X F, Meng H B, Chen H Y, et al. Bimetallic PtCo alloyed nanodendritic assemblies as an advanced efficient and robust electrocatalyst for highly efficient hydrogen evolution and oxygen reduction [J]. Journal of Alloys and Compounds, 2019, 786: 232-239. |
35 | Li C, Zhang B, Li Y, et al. Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction [J]. Applied Catalysis B: Environmental, 2019, 244: 56-62. |
36 | Zhu W, Zhu G, Yao C, et al. Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction [J]. Journal of Alloys and Compounds, 2020, 828: 154465. |
37 | Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis [J]. Advanced Functional Materials, 2019, 29(3): 1806419. |
38 | Ali S, Chen L, Li Z, et al. Cux-Nb1.1-x (x = 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2018, 236: 25-35. |
39 | Liu M, Zhang Q, Shi Y, et al. AuPd bimetal immobilized on amine-functionalized SBA-15 for hydrogen generation from formic acid: the effect of the ratio of toluene to DMF [J]. The Canadian Journal of Chemical Engineering, 2020, 98(4): 879-891. |
40 | Li S, Gong D, Tang H, et al. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation [J]. Chemical Engineering Journal, 2018, 334: 2167-2178. |
41 | Ma Y, Yin L, Cao G, et al. Pt-Pd bimetal popcorn nanocrystals: enhancing the catalytic performance by combination effect of stable multipetals nanostructure and highly accessible active sites [J]. Small, 2018, 14(14): 1703613. |
42 | Xiao S, Pan D, Liang R, et al. Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization [J]. Applied Catalysis B: Environmental, 2018, 236: 304-313. |
43 | Han C, Tang Z R, Liu J, et al. Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal–semiconductor hybrids [J]. Chemical Science, 2019, 10(12): 3514-3522. |
44 | Matsubu J C, Zhang S, DeRita L, et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts [J]. Nat. Chem., 2017, 9(2): 120-127. |
45 | Ola O, Maroto-Valer M, Liu D, et al. Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation [J]. Applied Catalysis B: Environmental, 2012, 126: 172-179. |
46 | Martin N M, Velin P, Skoglundh M, et al. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts [J]. Catalysis Science & Technology, 2017, 7(5): 1086-1094. |
47 | Halasi G, Tóth A, Bánsági T, et al. Production of H2 in the photocatalytic reactions of ethane on TiO2 -supported noble metals [J]. International Journal of Hydrogen Energy, 2016, 41(31): 13485-13492. |
48 | Zhang M, Shao C, Guo Z, et al. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties [J]. ACS Applied Materials & Interfaces, 2011, 3: 369-377. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[8] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[11] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||