CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4282-4291.DOI: 10.11949/0438-1157.20200468
• Energy and environmental engineering • Previous Articles Next Articles
Zhe BAI1(),Ruijian LI1,Wenshuo HOU1,Haijun LI2,Zhenhua WANG1()
Received:
2020-05-05
Revised:
2020-07-08
Online:
2020-09-05
Published:
2020-09-05
Contact:
Zhenhua WANG
通讯作者:
王振华
作者简介:
白哲(1996—),男,硕士研究生,基金资助:
CLC Number:
Zhe BAI, Ruijian LI, Wenshuo HOU, Haijun LI, Zhenhua WANG. Synthesis of bimetallic sulfide CuCo2S4 and its application in lithium-sulfur batteries[J]. CIESC Journal, 2020, 71(9): 4282-4291.
白哲, 李睿健, 侯文烁, 李海军, 王振华. 双金属硫化物CuCo2S4的合成及其在锂硫电池中的应用[J]. 化工学报, 2020, 71(9): 4282-4291.
Add to citation manager EndNote|Ris|BibTeX
Cathode material | Sulfur loading/(mg·cm-2) | Stable capacity/(mA·h·g-1) | Retention | Ref. |
---|---|---|---|---|
CuCo2S4-S | 1.2 | 591 at 0.2C 392 at 0.5C | 61.6% after 100 cycles 52.4% after 300 cycles | this work |
S/a-CMs | 1.3 | 590 at 0.1C | 55.9% after 50 cycles | [ |
MnO2@MWCNT-S | 1.2 | 560 at 0.1C | 48.7% after 100 cycles | [ |
VS2/S | 1.16 | 467.5 at 0.2C | 54.8% after 200 cycles | [ |
VS2@S | 1.5 | 427 at 0.2C | 33.5% after 500 cycles | [ |
Ni3Co6S8@C | 1.5 | 340 at 0.12C | 46.8% after 200 cycles | [ |
NiCo2S4/S | 1.0 | 421at 0.1C | 41.0% after 100 cycles | [ |
MWCNT/Co9S8/S | 1.0 | 503 at 0.1C | 44.8% after 100 cycles | [ |
Table 1 Comparison of previous reported cathode and this work
Cathode material | Sulfur loading/(mg·cm-2) | Stable capacity/(mA·h·g-1) | Retention | Ref. |
---|---|---|---|---|
CuCo2S4-S | 1.2 | 591 at 0.2C 392 at 0.5C | 61.6% after 100 cycles 52.4% after 300 cycles | this work |
S/a-CMs | 1.3 | 590 at 0.1C | 55.9% after 50 cycles | [ |
MnO2@MWCNT-S | 1.2 | 560 at 0.1C | 48.7% after 100 cycles | [ |
VS2/S | 1.16 | 467.5 at 0.2C | 54.8% after 200 cycles | [ |
VS2@S | 1.5 | 427 at 0.2C | 33.5% after 500 cycles | [ |
Ni3Co6S8@C | 1.5 | 340 at 0.12C | 46.8% after 200 cycles | [ |
NiCo2S4/S | 1.0 | 421at 0.1C | 41.0% after 100 cycles | [ |
MWCNT/Co9S8/S | 1.0 | 503 at 0.1C | 44.8% after 100 cycles | [ |
1 | 袁艳, 郑东东, 方钊, 等. 锂硫电池硫正极技术研究进展[J]. 储能科学与技术, 2018, 7(4): 618-630. |
Yuan Y, Zheng D D, Fang Z, et al. Research progress on sulfur cathode of lithium sulfur battery[J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. | |
2 | Xu K. A long journey of lithium: from the big bang to our smartphones[J]. Energ. Environ. Mater., 2019, 2(4): 229-233. |
3 | Gueon D, Hwang J T, Yang S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1): 226-233. |
4 | Zhang L L, Wang Y J, Niu Z Q, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2019, 141: 400-416. |
5 | Li Z H, He Q, Xu X, et al. A 3D nitrogen-doped graphene/tin nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity[J]. Adv. Mater., 2018, 30(45): 1804089. |
6 | Chung S H, Manthiram A. Current status and future prospects of metal–sulfur batteries[J]. Adv. Mater., 2019, 31(27): 1901125. |
7 | Ren W C, Ma W, Zhang S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Mater., 2019, 23: 23707-23732. |
8 | 王杰, 孙晓刚, 陈珑, 等. 多壁碳纳米管夹层抑制锂硫电池穿梭效应[J]. 化工进展, 2018, 37(3): 1070-1075. |
Wang J, Sun X G, Chen L, et al. Multi-walled carbon nanotube interlayer for checking of the shuttle effect of lithium-sulphur battery[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1070-1075. | |
9 | Shen J, Xu X, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019, 13(8): 8986-8996. |
10 | 盖丽艳, 郎笑石, 蔡克迪, 等. 锂硫电池正极材料的研究进展[J]. 电池, 2019, 49(1): 72-75. |
Gai L Y, Lang X S, Cai K D, et al. Research progress in cathode materials for lithium-sulfur battery[J]. Battery, 2019, 49(1): 72-75. | |
11 | Wang T, Zhu J, Wei Z, et al. Bacteria-derived biological carbon building robust Li-S batteries[J]. Nano Lett., 2019, 19(7): 4384-4390. |
12 | Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506. |
13 | Zhou G M, Paek E, Hwang G S, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nat. Commun., 2015, 6(1): 7760. |
14 | 杨蓉, 李兰, 王黎晴, 等. 微波法制备还原氧化石墨烯及其在锂硫电池中的应用[J]. 化工学报, 2017, 68(11): 4333-4340. |
Yang R, Li L, Wang L Q, et al. Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11): 4333-4340. | |
15 | 李巧乐, 燕映霖, 杨蓉, 等. 锂硫电池用玉米苞叶基活性炭/硫复合正极材料的电化学性能[J]. 化工学报, 2017, 68(11): 4376-4382. |
Li Q L, Yan Y L, Yang R, et al. Electrochemical performance of activated carbon derived from corn bracts / sulfur composite cathode material for lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11): 4376-4382. | |
16 | Kong L, Jin Q, Zhang X T, et al. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2019, 39: 17-22. |
17 | Li H Y, Fei L F, Zhang R, et al. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 339-347. |
18 | Wang J Y, Si L P, Wei Q, et al. An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries[J]. J. Energy Chem., 2019, 28: 54-60. |
19 | Li S, Cen Y, Xiang Q, et al. Vanadium dioxide- reduced graphene oxide binary host as an efficient polysulfide plague for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A., 2019, 7(4): 1658-1668. |
20 | Song Y Z, Zhao W, Zhu X Y, et al. Vanadium dioxide-graphene composite with ultrafast anchoring behavior of polysulfides for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15733-15741. |
21 | Wang S Z, Liao J X, Yang X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 230-240. |
22 | Xu J, Zhang W X, Chen Y, et al. MOF-derived porous N-Co3O4@ N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries[J]. J. Mater. Chem. A., 2018, 6(6): 2797-2807. |
23 | Wang Y K, Zhang R F, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Adv. Energy. Mater., 2019, 9(24): 1900953. |
24 | Zhang Z, Basu S, Zhu P P, et al. Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries[J]. Carbon, 2019, 142: 32-39. |
25 | Kong L, Chen X, Li B Q, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries[J]. Adv. Mater., 2018, 30(2): 1705219. |
26 | Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527. |
27 | Chen T, Ma L B, Cheng B R, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy, 2017, 38: 239-248. |
28 | Tong W, Huang Y D, Jia W, et al. Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries[J]. J. Alloys Compd., 2018, 731: 964-970. |
29 | Wang H E, Li X C, Qin N, et al. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator[J]. J. Mater. Chem. A., 2019, 7(19): 12068-12074. |
30 | 姚琳, 周玲, 李世雄, 等. 层层自组装MoS2多晶片增强锂硫电池性能(英文)[J]. 储能科学与技术, 2019, 8(3): 523-531. |
Yao L, Zhou L, Li S X, et al. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. | |
31 | You Y, Ye Y W, Wei M L, et al. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Chem. Eng. J., 2019, 335: 671-678. |
32 | Huang X, Tang J Y, Luo B, et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries[J]. Adv. Energy. Mater., 2019, 9(32): 1901872. |
33 | Li S, Xu P, Aslam M K, et al. Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes[J]. Energy Storage Mater., 2020, 27: 51-60. |
34 | Lu X L, Zhang Q F, Wang J, et al. High performance bimetal sulfides for lithium-sulfur batteries[J]. Chem. Eng. J., 2019, 358: 955-961. |
35 | Wu L S, Tang S H, Qu R J. Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery[J]. J. Mater. Sci., Mater. Electron., 2019, 30(1): 189-199. |
36 | 彭娜, 翟鹏飞, 王景涛, 等. 二氧化锰纳米片改性隔膜在锂硫电池中的应用[J]. 化工学报, 2020, 71(5): 2389-2400. |
Peng N, Zhai P F, Wang J T, et al. Application of manganese dioxide nanosheets modified separator for lithium-sulfur batteries[J]. CIESC Journal, 2020, 71(5): 2389-2400. | |
37 | Ren J, Zhou Y B, Wu H L, et al. Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries[J]. J. Energy Chem., 2019, 30: 121-131. |
38 | Luo D, Li G R, Deng Y P, et al. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(18): 1900228. |
39 | Song Y, Wang H, Yu W S, et al. Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox[J]. J. Power Sources, 2018, 40: 551-560. |
40 | Zheng T, Li G, Meng X, et al. Porous core–shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries[J]. Chem. Eur. J., 2019, 25(3): 885-891. |
41 | Du X, Huang C, Zhang X. Surface modification of a Co9S8 nanorods with Ni(OH)2 on nickel foam for high water splitting performance[J]. Int. J. Hydrogen Energy, 2019, 44(36): 19953-19966. |
42 | 尚永亮, 王诚飞, 刘斌, 等. MnO2包覆的碳纳米管-硫复合正极材料的制备及性能[J]. 储能科学与技术, 2017, 6(3): 411-417. |
Shang Y L, Wang C F, Liu B, et al. Preparation and properties of manganese dioxide coated carbon nanotubes-sulfur composite cathode material[J]. Energy Storage Science and Technology, 2017, 6(3): 411-417. | |
43 | Wu H L, Huan Y H, Wang D H, et al. Hierarchical VS2 nano-flowers as sulfur host for lithium sulfur battery cathodes[J]. J. Electrochem. Soc., 2019, 166(2): A188-A194. |
44 | Chen X J, Du G H, Zhang M, et al. Vanadium sulfide@sulfur composites as high‐performance cathode for advanced lithium–sulfur batteries[J]. Energy Technol., 2020, 8: 1901163. |
45 | Yan X C, Fu L, Wang X G, et al. High Performance lithium secondary batteries based on novel Ni3Co6S8@C core–shell nanoparticle[J]. J. Nanosci. Nanotechnol., 2017, 17(8): 5384-5390. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||