CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4292-4302.DOI: 10.11949/0438-1157.20200532
• Energy and environmental engineering • Previous Articles Next Articles
Yang XIAO1(),Chunming XU1,Xiaoxia YANG1,Lihong ZHANG1,Wang SUN1,2(),Jinshuo QIAO1,2,Zhenhua WANG1,2,Kening SUN1,2
Received:
2020-05-08
Revised:
2020-08-04
Online:
2020-09-05
Published:
2020-09-05
Contact:
Wang SUN
肖扬1(),徐春明1,杨晓霞1,张立红1,孙旺1,2(),乔金硕1,2,王振华1,2,孙克宁1,2
通讯作者:
孙旺
作者简介:
肖扬(1996—),男,硕士研究生,基金资助:
CLC Number:
Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode[J]. CIESC Journal, 2020, 71(9): 4292-4302.
肖扬, 徐春明, 杨晓霞, 张立红, 孙旺, 乔金硕, 王振华, 孙克宁. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302.
Add to citation manager EndNote|Ris|BibTeX
阴极材料 | 电池结构(电解质厚度) | 面电阻(800℃)/(Ω·cm2) | 功率密度(800℃)/(mW·cm-2) | 文献 |
---|---|---|---|---|
NiMn2O4 | NiO-SSZ|SSZ|NMO (15μm) | 0.27 | 864.9 | 本文 |
La0.8Sr0.2MnO3-δ | Pt|SSZ|LSM-SSZ(r=15 mm) | 0.32 | — | [ |
Mn1.5Co1.5O4 | MCO-YSZ|YSZ|MCO-YSZ(125 μm) | 0.43 | 386 | [ |
Sr2Fe1.5Mo0.5O6-δ | SFM|LSGM|SFM | 0.24 | ~500 | [ |
Pr2NiO4 | NiO-SDC|SDC|PNO | 1.8 | 487 | [ |
Sm0.5Sr0.5CoO3-δ | LST-GDC|LSGM|SSC-GDC | ~0.47 | — | [ |
SrCo0.7Fe0.2Nb0.1O3-δ | Ni-SDC|SDC|SCFN-xSDC (300μm) | 0.048 | 417 | [ |
Table 1 Comparison of electrochemical properties of NMO with other cathode materials
阴极材料 | 电池结构(电解质厚度) | 面电阻(800℃)/(Ω·cm2) | 功率密度(800℃)/(mW·cm-2) | 文献 |
---|---|---|---|---|
NiMn2O4 | NiO-SSZ|SSZ|NMO (15μm) | 0.27 | 864.9 | 本文 |
La0.8Sr0.2MnO3-δ | Pt|SSZ|LSM-SSZ(r=15 mm) | 0.32 | — | [ |
Mn1.5Co1.5O4 | MCO-YSZ|YSZ|MCO-YSZ(125 μm) | 0.43 | 386 | [ |
Sr2Fe1.5Mo0.5O6-δ | SFM|LSGM|SFM | 0.24 | ~500 | [ |
Pr2NiO4 | NiO-SDC|SDC|PNO | 1.8 | 487 | [ |
Sm0.5Sr0.5CoO3-δ | LST-GDC|LSGM|SSC-GDC | ~0.47 | — | [ |
SrCo0.7Fe0.2Nb0.1O3-δ | Ni-SDC|SDC|SCFN-xSDC (300μm) | 0.048 | 417 | [ |
1 | 李彦, 骆仲泱, 余春江, 等. 复合掺杂钙钛矿氧化物La0.6Sr0.4-xCaxCo1-yNiyO3-δ阴极的制备和电性能[J]. 化工学报, 2007, 58(5): 1301-1306. |
Li Y, Luo Z Y, Yu C J, et al. Preparation and electric properties of La0.6Sr0.4-xCaxCo1-yNiyO3-δ composite doped perovskite oxide cathode[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(5): 1301-1306. | |
2 | Qiu Y F, Li H Z, Liu Y H, et al. Effects of niobium doping on the stability of SrCo0.2Fe0.8O3-δ cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2020, 829: 154503. |
3 | 孙红燕, 森维, 易中周, 等. 中温固体氧化物燃料电池材料的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1194-1199. |
Sun H Y, Sen W, Yi Z Z, et al. Research progress of intermediate temperature solid oxide fuel cell materials[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1194-1199. | |
4 | Luo Y, Laura L, Daiguebonne C, et al. A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework[J]. Applied Catalysis B: Environmental, 2016, 189: 39-50. |
5 | Sunarso J, Baumann S, Serra J M, et al. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation[J]. Journal of Membrane Science, 2008, 320(1/2): 13-41. |
6 | 朴金花, 孙克宁, 廖世军. 钙钛矿型SOFC阴极材料的研究进展[J]. 电源技术, 2009, 33(8): 725-729. |
Piao J H, Sun K N, Liao S J. Progress on the perovskite-type cathode materials of solid oxide fuel cell[J]. Power Source Technology, 2009, 33(8): 725-729. | |
7 | Hagiwara A, Hobara N, Takizawa K, et al. Preparation and evaluation of mechanochemically fabricated LSM/ScSZ composite materials for SOFC cathodes[J]. Solid State Ionics, 2006, 177(33/34): 2967-2977. |
8 | Zhao L, He B B, Lin B, et al. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode[J]. Journal of Power Sources, 2009, 194(2): 835-837. |
9 | McIntosh S, Vente J F, Haije W G, et al. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction[J]. Chemistry of Materials, 2006,18(8): 2187-2193. |
10 | Zhao E, Jia Z, Zhao L, et al. One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 219: 133-139. |
11 | Javed M S, Shaheen N, Idrees A, et al. Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10416-10422. |
12 | Liang Y Y, Wang H L, Zhou J G, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2012, 134(7): 3517-3523. |
13 | 张荣斌, 李莉, 蔡建信, 等. 尖晶石表面结构与催化性能的研究进展[J]. 江西师范大学学报(自然科学版), 2019, 43(6): 565-575. |
Zhang R B, Li L, Cai J X, et al. Research progress on surface structure and catalytic properties of spinel[J]. Journal of Jiangxi Normal University (Natural Science), 2019, 43(6): 565-575. | |
14 | Zhao P F, Liang C Y, Gong X W, et al. Microwave absorption enhancement, magnetic coupling and ab initio electronic structure of monodispersed (Mn1-xCox)3O4 nanoparticles[J]. Nanoscale, 2013, 5(17): 8022-8028. |
15 | Liu H Y, Zhu X F, Cheng M J, et al. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxide fuel cells[J]. Chemical Communications, 2011, 47(8): 2378-2380. |
16 | Liu X J, Han D, Wu H, et al. Mn1.5Co1.5O4-δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38: 16563-16568. |
17 | Peng S J, Li L L, Xu Y X, et al. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications[J]. ACS Nano, 2015, 9(2): 1945-1954. |
18 | Larbi T, Doll K, Amlouk M. Temperature dependence of Raman spectra and first principles study of NiMn2O4 magnetic spinel oxide thin films. Application in efficient photocatalytic removal of RhB and MB dyes[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2019, 216: 117-124. |
19 | Dai N N, Feng J, Wang Z H, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs[J]. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153. |
20 | Yu X D, Sui C, Ren R Z, et al. Construction of heterointerfaces with enhanced oxygen reduction kinetics for intermediate-temperature solid oxide fuel cells[J]. ACS Applied Energy Materials, 2020, 3(1): 447-455. |
21 | Zhou X L, Sun K N, Gao J, et al. Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting[J]. Journal of Power Source, 2009, 191: 528-533. |
22 | 吴炳辉, 周立娟, 刘晓燕, 等. 复相导电陶瓷的导电机理分析[J]. 人工晶体学报, 2015, 44(12): 3537-3542. |
Wu B H, Zhou L J, Liu X Y, et al. Analysis on electrical conduction mechanism of the composite conductive ceramics[J]. Journal of Synthetic Crystals, 2015, 44(12):3537-3542. | |
23 | Hassan M S, Yang O B. Enhanced performance of nanocrystalline Cu-doped Pr0.6 Sr0.4FeO3 as cathode for solid oxide fuel cell[J]. Solid State Communications, 2013,156: 59-63. |
24 | Long J, Gu J X, Yang Z H, et al. Highly porous, low band-gap NixMn3-xO4 (0.55≤x≤1.2) spinel nanoparticles with in-situ coated carbon as advanced cathode materials for zinc-ion batteries[J]. Journal of Materials Chemistry, 2019, 7(30): 17854-17866. |
25 | Marco J, Gancedo J, Nguyencong H, et al. Characterization of Cu1.4Mn1.6O4/PPy composite electrodes[J]. Solid State Ionics, 2006, 177: 1381-1388. |
26 | Bradley K, Giagloglou K, Hayden B E, et al. Reversible perovskite electrocatalysts for oxygen reduction/oxygen evolution[J]. Chemical Science, 2019, 10(17): 4609-4617. |
27 | Xu C M, Sun K N, Yang X X, et al. Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2020, 450: 227722. |
28 | Yang X X, Sun K N, Ma M J, et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis[J]. Applied Catalysis B: Environmental, 2020, 272: 118968. |
29 | Gopal C G, Haile S M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria[J]. Journal of Materials Chemistry A, 2014, 2: 2405-2417. |
30 | Chen Y, Bu Y F, Zhang Y X, et al. A highly efficient and robust nanofiber cathode for solid oxide fuel cells[J]. Advanced Energy Materials, 2017, 7(6): 1601890. |
31 | Gao Z, Liu X M, Bergman B, et al. Investigation of oxygen reduction reaction kinetics on Sm0.5Sr0.5CoO3 cathode supported on Ce0.85Sm0.075Nd0.075O2-δ electrolyte[J]. Journal of Power Sources, 2011, 196: 9195-9203. |
32 | Zhou W, Ran R, Shao Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition[J]. Electrochimical Acta, 2008, 53: 4370-4380. |
33 | Liu Q, Dong X H, Xiao G L, et al. A novel electrode material for symmetrical SOFCs[J]. Advanced Materials, 2010, 22: 5478-5482. |
34 | Lin M X, Sakthinathan S, Chiu T W, et al. Preparation of IT-SOFC with Pr2NiO4 cathode and hybrid Ce0.8Sm0.2O1.9 electrolyte[J]. Journal of the Ceramic Society of Japan, 2019, 127(4): 249-253. |
35 | Fan L Q, Wang Y W, Jia Z, et al. Nanofiber-structured SSC-GDC composite cathodes for a LSGM electrolyte based IT-SOFCs[J]. Ceramics International, 2015, 41: 6583-6588. |
36 | Lu S Q, Yu B, Meng X W, et al. Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Source, 2014, 273: 244-254. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[13] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||