CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1018-1025.DOI: 10.11949/0438-1157.20201294
• Catalysis, kinetics and reactors • Previous Articles Next Articles
LIU Honglei(),PENG Yaqi,TAO Junyi,TANG Minghui,LU Shengyong()
Received:
2020-09-09
Revised:
2020-11-13
Online:
2021-02-05
Published:
2021-02-05
Contact:
LU Shengyong
通讯作者:
陆胜勇
作者简介:
刘红蕾(1996—),女,硕士研究生,基金资助:
CLC Number:
LIU Honglei, PENG Yaqi, TAO Junyi, TANG Minghui, LU Shengyong. Study on catalytic degradation of PCDD/Fs over Mn-Ce-Co-Ox/PPS catalytic filter[J]. CIESC Journal, 2021, 72(2): 1018-1025.
刘红蕾, 彭亚旗, 陶鋆奕, 汤明慧, 陆胜勇. Mn-Ce-Co-Ox/PPS催化滤料催化降解气相二英的研究[J]. 化工学报, 2021, 72(2): 1018-1025.
同系物 | 初始浓度/(ng I-TEQ/m3) | 平均值/(ng I-TEQ/m3) | 相对标准 偏差/% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
2,3,7,8-TCDD | 0.3366 | 0.3439 | 0.3095 | 0.3300 | 5.50 |
1,2,3,7,8-PeCDD | 0.4259 | 0.4487 | 0.4744 | 0.4497 | 5.39 |
1,2,3,4,7,8-HxCDD | 0.0818 | 0.0916 | 0.0880 | 0.0871 | 5.71 |
1,2,3,6,7,8-HxCDD | 0.1120 | 0.1423 | 0.1386 | 0.1310 | 12.64 |
1,2,3,7,8,9-HxCDD | 0.1056 | 0.1230 | 0.1210 | 0.1165 | 8.20 |
1,2,3,4,6,7,8-HpCDD | 0.0722 | 0.0921 | 0.0918 | 0.0854 | 13.32 |
OCDD | 0.0083 | 0.0103 | 0.0117 | 0.0101 | 16.77 |
2,3,7,8-TCDF | 0.2024 | 0.2035 | 0.2034 | 0.2031 | 0.30 |
1,2,3,7,8-PeCDF | 0.1115 | 0.1282 | 0.1133 | 0.1177 | 7.83 |
2,3,4,7,8-PeCDF | 2.4160 | 2.8840 | 2.4885 | 2.5962 | 9.70 |
1,2,3,4,7,8-HxCDF | 0.2679 | 0.3190 | 0.2832 | 0.2900 | 9.05 |
1,2,3,6,7,8-HxCDF | 0.3241 | 0.3553 | 0.3254 | 0.3350 | 5.27 |
2,3,4,6,7,8-HxCDF | 0.1532 | 0.1684 | 0.1542 | 0.1586 | 5.36 |
1,2,3,7,8,9-HxCDF | 0.4765 | 0.5562 | 0.5077 | 0.5135 | 7.82 |
1,2,3,4,6,7,8-HpCDF | 0.0594 | 0.0714 | 0.0679 | 0.0662 | 9.32 |
1,2,3,4,7,8,9-HpCDF | 0.0116 | 0.0139 | 0.0134 | 0.0130 | 9.30 |
OCDF | 0.0019 | 0.0020 | 0.0022 | 0.0021 | 7.92 |
PCDDs | 1.1424 | 1.2519 | 1.2350 | 1.2098 | 4.87 |
PCDFs | 4.0245 | 4.7021 | 4.1593 | 4.2953 | 8.35 |
PCDD/Fs | 5.1670 | 5.9540 | 5.3943 | 5.5051 | 7.36 |
Table 1 Initial concentration of seventeen 2, 3, 7, 8-substituted PCDD/F congeners
同系物 | 初始浓度/(ng I-TEQ/m3) | 平均值/(ng I-TEQ/m3) | 相对标准 偏差/% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
2,3,7,8-TCDD | 0.3366 | 0.3439 | 0.3095 | 0.3300 | 5.50 |
1,2,3,7,8-PeCDD | 0.4259 | 0.4487 | 0.4744 | 0.4497 | 5.39 |
1,2,3,4,7,8-HxCDD | 0.0818 | 0.0916 | 0.0880 | 0.0871 | 5.71 |
1,2,3,6,7,8-HxCDD | 0.1120 | 0.1423 | 0.1386 | 0.1310 | 12.64 |
1,2,3,7,8,9-HxCDD | 0.1056 | 0.1230 | 0.1210 | 0.1165 | 8.20 |
1,2,3,4,6,7,8-HpCDD | 0.0722 | 0.0921 | 0.0918 | 0.0854 | 13.32 |
OCDD | 0.0083 | 0.0103 | 0.0117 | 0.0101 | 16.77 |
2,3,7,8-TCDF | 0.2024 | 0.2035 | 0.2034 | 0.2031 | 0.30 |
1,2,3,7,8-PeCDF | 0.1115 | 0.1282 | 0.1133 | 0.1177 | 7.83 |
2,3,4,7,8-PeCDF | 2.4160 | 2.8840 | 2.4885 | 2.5962 | 9.70 |
1,2,3,4,7,8-HxCDF | 0.2679 | 0.3190 | 0.2832 | 0.2900 | 9.05 |
1,2,3,6,7,8-HxCDF | 0.3241 | 0.3553 | 0.3254 | 0.3350 | 5.27 |
2,3,4,6,7,8-HxCDF | 0.1532 | 0.1684 | 0.1542 | 0.1586 | 5.36 |
1,2,3,7,8,9-HxCDF | 0.4765 | 0.5562 | 0.5077 | 0.5135 | 7.82 |
1,2,3,4,6,7,8-HpCDF | 0.0594 | 0.0714 | 0.0679 | 0.0662 | 9.32 |
1,2,3,4,7,8,9-HpCDF | 0.0116 | 0.0139 | 0.0134 | 0.0130 | 9.30 |
OCDF | 0.0019 | 0.0020 | 0.0022 | 0.0021 | 7.92 |
PCDDs | 1.1424 | 1.2519 | 1.2350 | 1.2098 | 4.87 |
PCDFs | 4.0245 | 4.7021 | 4.1593 | 4.2953 | 8.35 |
PCDD/Fs | 5.1670 | 5.9540 | 5.3943 | 5.5051 | 7.36 |
1 | 任咏, 纪莎莎, 俞明锋, 等. V2O5-WO3/TiO2催化剂与活性炭混合降解气相二英[J]. 环境科学, 2015, 36(9): 3508-3514. |
Ren Y, Ji S S, Yu M F, et al. Degradation of PCDD/Fs by the mixture of V2O5-WO3/TiO2 catalyst and activated carbon[J]. Environmental Science, 2015, 36(9): 3508-3514. | |
2 | Lu S, Ji Y, Buekens A, et al. Activated carbon treatment of municipal solid waste incineration flue gas [J]. Waste Manag. Res., 2013, 31(2): 169-177. |
3 | 周旭健, 李晓东, 徐帅玺, 等. 多孔碳材料对二英吸附性能的研究评述及展望[J]. 环境污染与防治, 2016, 38(1): 76-81. |
Zhou X J, Li X D, Xu S X, et al. Dioxins adsorption on porous carbon materials: a review[J]. Environmental Pollution & Control, 2016, 38(1): 76-81. | |
4 | Du C, Lu S, Wang Q, et al. A review on catalytic oxidation of chloroaromatics from flue gas [J]. Chemical Engineering Journal, 2018, 334: 519-544. |
5 | Bonte J L, Fritsky K J, Plinke M A, et al. Catalytic destruction of PCDD/F in a fabric filter: experience at a municipal waste incinerator in Belgium[J]. Waste Management, 2002, 22(4): 421-426. |
6 | Hung P C, Chang S H, Lin S H, et al. Pilot tests on the catalytic filtration of dioxins[J]. Environmental Science & Technology, 2014, 48(7): 3995-4001. |
7 | Yang B, Zheng D H, Shen Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln [J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 148-152. |
8 | Yang B, Shen Y, Su Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln [J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141. |
9 | Yang B, Huang Q, Chen M, et al. Mn-Ce-Nb-Ox/P84 catalytic filters prepared by a novel method for simultaneous removal of particulates and NO [J]. Journal of Rare Earths, 2019, 37(3): 273-281. |
10 | Abubakar A, Li C, Huangfu L, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2 [J]. Korean Journal of Chemical Engineering, 2020, 37(4): 633-640. |
11 | 刘清, 郑玉婴, 汪谢. 基于MnOx-CeO2/PPSN的低温SCR脱硝[J]. 燃料化学学报, 2012, 40(4): 452-455. |
Liu Q, Zheng Y Y, Wang X. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN [J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 452-455. | |
12 | Bertinchamps F, Grégoire C, Gaigneaux E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics [J]. Applied Catalysis B: Environmental, 2006, 66(1/2): 1-9. |
13 | Yu M F, Li W W, Li X D, et al. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs [J]. Chemosphere, 2016, 156: 383-391. |
14 | Wang X Y, Kang Q, Li D. Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts [J]. Applied Catalysis B: Environmental, 2009, 86(3): 166-175. |
15 | Ma X, Wen J, Guo H, et al. Facile template fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene [J]. Chemical Engineering Journal, 2020, 382: 122940. |
16 | Li J, Zhao P, Liu S. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation [J]. Applied Catalysis A: General, 2014, 482: 363-369. |
17 | Dai Y, Wang X, Dai Q, et al. Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene [J]. Applied Catalysis B: Environmental, 2012, 111/112: 141-149. |
18 | Debecker D P, Bertinchamps F, Blangenois N, et al. On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: furan vs. chlorobenzene [J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 223-232. |
19 | Debecker D P, Delaigle R, Hung P C, et al. Evaluation of PCDD/F oxidation catalysts: confronting studies on model molecules with tests on PCDD/F-containing gas stream [J]. Chemosphere, 2011, 82(9): 1337-1342. |
20 | 俞明锋, 李晓东, 李文维, 等. 新型钒基催化剂催化降解气相二英[J]. 浙江大学学报(工学版), 2016, 50(11): 2052-2057, 2086. |
Yu M F, Li X D, Li W W, et al. Catalytic destruction of PCDD/Fs over new vanadium based oxide catalysts[J]. Journal of Zhejiang University(Engineering Science), 2016, 50(11): 2052-2057, 2086. | |
21 | Wang M, Zhang L, Huang W, et al. The catalytic oxidation removal of low-concentration HCHO at high space velocity by partially crystallized mesoporous MnOx [J]. Chemical Engineering Journal, 2017, 320: 667-676. |
22 | Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures [J]. Applied Catalysis A: General, 2007, 327(2): 261-269. |
23 | Liu S, Ji J, Yu Y, et al. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone [J]. Catalysis Science & Technology, 2018, 8(16): 4264-4273. |
24 | Li C, Li Z, Zhang M, et al. SiC-fixed organophilic montmorillonite hybrids for poly(phenylene sulfide) composites with enhanced oxidation resistance [J]. RSC Adv., 2017, 7(74): 46678-46689. |
25 | Weber R, Plinke M, Xu Z, et al. Destruction efficiency of catalytic filters for polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation — insight into destruction and adsorption behavior of semivolatile compounds [J]. Applied Catalysis B: Environmental, 2001, 31(3): 195-207. |
26 | Ji S S, Li X D, Ren Y, et al. Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst [J]. Chemosphere, 2013, 92(3): 265-272. |
27 | Yu M F, Lin X Q, Li X D, et al. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts [J]. Environmental Science and Pollution Research, 2016, 23(16): 16249-16258. |
28 | 杜翠翠, 王秋麟, 陆胜勇, 等. V2O5/TiO2基催化剂催化转化1, 2-二氯苯[J]. 环境化学, 2017, 36(1): 141-146. |
Du C, Wang Q, Lu S, et al. Catalytic conversion of 1,2-dichlorobenzene (1, 2-DCBz) over V2O5/TiO2-based catalysts [J]. Environmental Chemistry, 2017, 36(1): 141-146. | |
29 | Weber R, Sakurai T, Hagenmaier H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts [J]. Applied Catalysis B: Environmental, 1999, 20(4): 249-256. |
30 | Wang H C, Chang S H, Hung P C, et al. Synergistic effect of transition metal oxides and ozone on PCDD/F destruction [J]. J. Hazard. Mater., 2009, 164(2/3): 1452-1459. |
31 | Chang S H, Chi K H, Young C W, et al. Effect of fly ash on catalytic removal of gaseous dioxins over V2O5-WO3 catalyst of a sinter plant [J]. Environmental Science & Technology, 2009, 43(19): 7523-7530. |
32 | Ji S S, Ren Y, Buekens A, et al. Treating PCDD/Fs by combined catalysis and activated carbon adsorption [J]. Chemosphere, 2014, 102: 31-36. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[4] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[5] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[6] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[7] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[8] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[9] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[10] | Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge [J]. CIESC Journal, 2022, 73(9): 4025-4033. |
[11] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[12] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[13] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[14] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[15] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 523
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||