CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1333-1341.DOI: 10.11949/0438-1157.20200656
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
LIU Changhui(),LIU Hongli,ZHANG Tianjian,RAO Zhonghao()
Received:
2020-05-27
Revised:
2020-10-26
Online:
2021-03-05
Published:
2021-03-05
Contact:
RAO Zhonghao
通讯作者:
饶中浩
作者简介:
刘昌会(1987—),男,博士,副教授,基金资助:
CLC Number:
LIU Changhui, LIU Hongli, ZHANG Tianjian, RAO Zhonghao. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system[J]. CIESC Journal, 2021, 72(3): 1333-1341.
刘昌会, 刘红莉, 张天键, 饶中浩. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341.
Add to citation manager EndNote|Ris|BibTeX
DES | n(Urea)/n(ChCl) | m(Urea)/m(ChCl) | 30℃状态 |
---|---|---|---|
[ChCl][Urea]1 | 1∶1 | 12.90∶30 | 白色晶体 |
[ChCl][Urea]1.5 | 1.5∶1 | 19.36∶30 | 无色澄清液体 |
[ChCl][Urea]2 | 2∶1 | 25.81∶30 | 无色澄清液体 |
[ChCl][Urea]2.5 | 2.5∶1 | 26.88∶25 | 无色澄清液体 |
[ChCl][Urea]3 | 3∶1 | 25.81∶20 | 无色液体中有少许晶体 |
Table 1 States of DESs synthesized with different n(Urea)/n(ChCl)
DES | n(Urea)/n(ChCl) | m(Urea)/m(ChCl) | 30℃状态 |
---|---|---|---|
[ChCl][Urea]1 | 1∶1 | 12.90∶30 | 白色晶体 |
[ChCl][Urea]1.5 | 1.5∶1 | 19.36∶30 | 无色澄清液体 |
[ChCl][Urea]2 | 2∶1 | 25.81∶30 | 无色澄清液体 |
[ChCl][Urea]2.5 | 2.5∶1 | 26.88∶25 | 无色澄清液体 |
[ChCl][Urea]3 | 3∶1 | 25.81∶20 | 无色液体中有少许晶体 |
Fig.4 Thermal conductivity of graphene nanofluids with different mass fractions(a); Thermal conductivity enhancement of graphene nanofluids as a function of different testing temperatures (b)
1 | 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, (19): 2118-2122. |
Guo Z Y. The physical mechanism and control of convection heat transfer: the synergy between velocity field and heat flow field[J]. Chinese Sci. Bull., 2000, (19): 2118-2122. | |
2 | Fakheri A. Heat exchanger efficiency[J]. J. Heat Trans. -T. ASME, 2007, 129(9): 1268-1276. |
3 | 朱冬生, 钱颂文. 强化传热技术及其设计应用[J]. 化工装备技术, 2000, 6: 1-9. |
Zhu D S, Qian S W. Enhanced heat transfer technology and its design and application[J]. Chemical Equipment Technology, 2000, 6: 1-9. | |
4 | Kukulka D J, Smith R, Fuller K G. Development and evaluation of enhanced heat transfer tubes[J]. Appl. Therm. Eng., 2011, 31(13): 2141-2145. |
5 | 宣益民, 李强. 纳米流体强化传热研究[J]. 工程热物理学报, 2000, 21(4): 466-470. |
Xuan Y M, Li Q. Heat transfer enhancement of nanofluids[J]. J. Eng. Thermophys., 2000, 21(4): 466-470. | |
6 | 张正国, 燕志鹏, 方晓明, 等. 纳米技术在强化传热中应用的研究进展[J]. 化工进展, 2011, 30(1): 34-39. |
Zhang Z G, Yan Z P, Fang X M, et al. Research development of applications of nanotechnology in heat transfer enhancment[J]. Chem. Ind. Eng. Pro., 2011, 30(1): 34-39. | |
7 | Buongiorno J. Convective transport in nanofluids[J]. J. Heat Trans., 2006, 128(3): 240-250. |
8 | Choi S U S. Nanofluids: from vision to reality through research[J]. J. Heat Trans., 2009, 131(3): 033106. |
9 | 宣益民. 纳米流体能量传递理论与应用[J]. 中国科学: 技术科学, 2014, 44(3): 269-279. |
Xuan Y M. An overview on nanofluids and applications[J]. Sci. Sin. Tech., 2014, 44(3): 269–279. | |
10 | Saidur R, Leong K Y, Mohammed H A. A review on applications and challenges of nanofluids[J]. Renew. Sust. Energ. Rev., 2011, 15(3): 1646-1668. |
11 | Liu C H, Qiao Y, Lv B R, et al. Glycerol based binary solvent: thermal properties study and its application in nanofluids[J]. Int. Commun. Heat Mass Tran., 2020, 112: 104491. |
12 | Chen H S, He Y R, Zhu J W, et al. Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2][J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 149-155. |
13 | Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nat. Commun., 2014, 5: 4449. |
14 | Mahian O, Kianifar A, Kalogirou S A, et al. A review of the applications of nanofluids in solar energy[J]. Int. J. Heat Mass Trans., 2013, 57(2): 582-594. |
15 | Bahiraei M, Rahmani R, Yaghoobi A, et al. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review[J]. Appl. Therm. Eng., 2018, 133: 137-159. |
16 | Nieto de Castro C A, Lourenço M J V, Ribeiro A P C, et al. Thermal properties of ionic liquids and IoNanofluids of imidazolium and pyrrolidinium liquids[J]. J. Chem. Eng. Data, 2010, 55(2): 653-661. |
17 | Musiał M, Kuczak M, Mrozek-Wilczkiewicz A, et al. Trisubstituted imidazolium-based ionic liquids as innovative heat transfer media in sustainable energy systems[J]. ACS Sust. Chem. Eng., 2018, 6(6): 7960-7968. |
18 | 顾彦龙, 石峰, 邓友全. 室温离子液体: 一类新型的软介质和功能材料[J]. 科学通报, 2004, (6): 515-521. |
Gu Y L, Shi F, Deng Y Q. Room temperature ionic liquids: a new type of soft media and functional materials[J]. Chinese Sci. Bull., 2004, (6): 515-521. | |
19 | 张晓春, 张锁江, 左勇, 等. 离子液体的制备及应用[J]. 化学进展, 2010, 22(7): 1499-1508. |
Zhang X C, Zhang S J, Zuo Y, et al. Preparation and applications of ionic liquids[J]. Prog. Chem., 2010, 22(7): 1499-1508. | |
20 | Zhang Q H, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem. Soc. Rev., 2012, 41(21): 7108-7146. |
21 | Liu C H, Fang H, Qiao Y, et al. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids[J]. Int. J. Heat Mass Trans., 2019, 138: 690-698. |
22 | Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114(21): 11060-11082. |
23 | Liu C H, Fang H, Liu X J, et al. Novel silica filled deep eutectic solvent based nanofluids for energy transportation[J]. ACS Sust. Chem. Eng., 2019, 7(24): 20159-20169. |
24 | Fang Y K, Osama M, Rashmi W, et al. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids[J]. Nanotechnology, 2016, 27(7): 075702. |
25 | Chen Y Y, Walvekar R, Khalid M, et al. Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid[J]. Mater. Res. Express, 2017, 4(7): 075028. |
26 | Simeonov S P, Afonso C A M. Basicity and stability of urea deep eutectic mixtures[J]. RSC Adv., 2016, 6(7): 5485-5490. |
27 | D'Agostino C, Harris R C, Abbott A P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Phys. Chem. Chem. Phys., 2011, 13(48): 21383-21391. |
28 | Ashworth C R, Matthews R P, Welton T, et al. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent[J]. Phys. Chem. Chem. Phys., 2016, 18(27): 18145-18160. |
29 | Oster K, Hardacre C, Jacquemin J, et al. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids)[J]. J. Mol. Liq., 2018, 253: 326-339. |
30 | Gilmore M, Swadzba-Kwasny M, Holbrey J D. Thermal properties of choline chloride/urea system studied under moisture-free atmosphere[J]. J. Chem. Eng. Data, 2019, 64(12): 5248-5255. |
31 | 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究[J]. 物理学报, 2014, 63(15): 303-309. |
Ye Z Q, Cao B Y, Guo Z Y. Study on thermal characteristics of phonons in graphene[J]. Acta Phys. Sin., 2014, 63(15): 303-309. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[10] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||