CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2763-2772.DOI: 10.11949/0438-1157.20201484
• Energy and environmental engineering • Previous Articles Next Articles
LI Wei(),WANG Qiuwang,ZENG Min()
Received:
2020-10-26
Revised:
2020-12-02
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZENG Min
通讯作者:
曾敏
作者简介:
李威(1993—),男,博士研究生,基金资助:
CLC Number:
LI Wei, WANG Qiuwang, ZENG Min. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J]. CIESC Journal, 2021, 72(5): 2763-2772.
李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
Add to citation manager EndNote|Ris|BibTeX
工况 | 纯K2CO3 | CS15 | ||
---|---|---|---|---|
平衡吸附 量/(g/g) | 所需 时间/min | 平衡吸 附量/(g/g) | 所需 时间/min | |
30℃,29% RH | 0.1906 | 360 | 0.168 | 250 |
30℃,40% RH | 0.1924 | 350 | 0.169 | 230 |
30℃,55% RH | 0.24 | 400 | 0.2031 | 360 |
Table 1 Equilibrium adsorption capacities and corresponding times of sorbents
工况 | 纯K2CO3 | CS15 | ||
---|---|---|---|---|
平衡吸附 量/(g/g) | 所需 时间/min | 平衡吸 附量/(g/g) | 所需 时间/min | |
30℃,29% RH | 0.1906 | 360 | 0.168 | 250 |
30℃,40% RH | 0.1924 | 350 | 0.169 | 230 |
30℃,55% RH | 0.24 | 400 | 0.2031 | 360 |
Fig.6 Schematic of the integral heat storage pipe (a) and a half of the symmetrical structure and boundary conditions (b), grid independence verification (c)
控制方程 | 描述 | |
---|---|---|
反应动力学 | α为转化率;pv, peq分别为蒸汽动态压力和平衡压力;Af为指前因子;Ea为反应活化能;R为通用气体常数 | |
克劳修斯-克拉贝隆方程 | pref为参考水平压力;ΔHr为反应焓;ΔSr 为熵 | |
质量守恒及质量输运 | ε为吸附剂反应床孔隙率;Dg为蒸汽在多孔吸附剂内扩散系数 | |
质量源项Sw | ρs 为储热吸附剂密度;Mv/Ms 为蒸汽摩尔质量和储热吸附剂摩尔质量比值 | |
湿空气混合物 | ρm 为湿空气密度;u 为气体速度 | |
多孔储热材料内流体流动 | k为反应床渗透率;μm为水蒸气黏度 | |
能量守恒 | 热源 |
Table 2 Governing equations and descriptions
控制方程 | 描述 | |
---|---|---|
反应动力学 | α为转化率;pv, peq分别为蒸汽动态压力和平衡压力;Af为指前因子;Ea为反应活化能;R为通用气体常数 | |
克劳修斯-克拉贝隆方程 | pref为参考水平压力;ΔHr为反应焓;ΔSr 为熵 | |
质量守恒及质量输运 | ε为吸附剂反应床孔隙率;Dg为蒸汽在多孔吸附剂内扩散系数 | |
质量源项Sw | ρs 为储热吸附剂密度;Mv/Ms 为蒸汽摩尔质量和储热吸附剂摩尔质量比值 | |
湿空气混合物 | ρm 为湿空气密度;u 为气体速度 | |
多孔储热材料内流体流动 | k为反应床渗透率;μm为水蒸气黏度 | |
能量守恒 | 热源 |
1 | Wang F, Gu J, Wu J. Perspective taking, energy policy involvement, and public acceptance of nuclear energy: evidence from China [J]. Energy Policy, 2020, 145: 111716. |
2 | Allen-Dumas M R, Rose A N, New J R, et al. Impacts of the morphology of new neighborhoods on microclimate and building energy [J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110030. |
3 | 马坤茹, 李雪峰, 李思琦, 等. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71: 375-381. |
Ma K R, Li X F, Li S Q. Contrastive research of heating performance of direct expansion solar/air assisted heat pump system and air-source heat pump [J]. CIESC Journal, 2020, 71: 375-381. | |
4 | Gaeini M, Rouws A L, Salari J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage [J]. Applied Energy, 2018, 212(15): 1165-1177. |
5 | Xu M, Zhao P, Huo Y, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437. |
6 | 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J].化工学报, 2020, 71(7): 3354-3361. |
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(7): 3354-3361. | |
7 | Bennici S, Polimann T, Ondarts M, et al. Long-term impact of air pollutants on thermochemical heat storage materials [J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109473. |
8 | 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11): 4921-4929. |
Xu K D, Xie T, Wang S, et al. Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4921-4929. | |
9 | Zhang Y, Wang R. Sorption thermal energy storage: concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. |
10 | Clark R J, Mehrabadi A, Farid M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications [J]. Journal of Energy Storage, 2020, 27: 101145. |
11 | 李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21. |
Li W, Chen W, Wang D D. Research and development of thermochemical energy storage based on hydrated salt [J]. Refrigeration and Air-Conditioning, 2017, 17(8): 14-21. | |
12 | 郝茂森, 刘洪芝, 王婉桐, 等. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 2020, 9(3): 791-796. |
Hao M S, Liu H Z, Wang W T, et al. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. | |
13 | 翁立奎, 张叶龙, 姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736. |
Weng L K, Zhang Y L, Jiang L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate [J]. Energy Starage Science and Technology, 2020, 9(6): 1729-1736. | |
14 | 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616. |
Li L, Huang H Y, Deng L S, et al. Research progress of low-grade energy chemical heat storage materials [J] Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616. | |
15 | Fumey B, Weber R, Baldini L. Sorption based long-term thermal energy storage - process classification and analysis of performance limitations: a review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 57-74. |
16 | Okhrimenko L, Favergeon L, Johannes K, et al. New kinetic model of the dehydration reaction of magnesium sulfate hexahydrate: application for heat storage [J]. Thermochimica Acta, 2020, 687: 178569. |
17 | Li W, Zeng M, Wang Q W. Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage [J]. Solar Energy Materials and Solar Cells, 2020, 210: 110509. |
18 | Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage [J]. Energy, 2018, 156: 240-249. |
19 | Xu J X, Li T X, Chao J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes [J]. Energy, 2019, 185: 1131-1142. |
20 | Wei S, Han R, Su Y, et al. Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage [J]. Energy Conversion and Management, 2020, 212: 112694. |
21 | Nonnen T, Preißler H, Kött S, et al. Salt inclusion and deliquescence in salt/zeolite X composites for thermochemical heat storage [J]. Microporous and Mesoporous Materials, 2020, 303: 110239. |
22 | Togawa J, Kurokawa A, Nagano K. Water sorption property and cooling performance using natural mesoporous siliceous shale impregnated with LiCl for adsorption heat pump [J]. Applied Thermal Engineering, 2020, 173: 115241. |
23 | Calabrese L, Brancato V, Palomba V, et al. Magnesium sulphate-silicone foam composites for thermochemical energy storage: assessment of dehydration behaviour and mechanical stability [J]. Solar Energy Materials and Solar Cells, 2019, 200: 109992. |
24 | Ait Ousaleh H, Said S, Zaki A, et al. Silica gel/inorganic salts composites for thermochemical heat storage: Improvement of energy storage density and assessment of cycling stability [J]. Materials Today: Proceedings, 2020, 30: 937-941. |
25 | Li W, Klemeš J J, Wang Q W, et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage [J]. Renewable Energy, 2020, 157: 920-940. |
26 | Cammarata A, Verda V, Sciacovelli A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: formulation, fabrication and performance investigation [J]. Energy Conversion and Management, 2018, 166: 233-240. |
27 | Ait Ousaleh H, Sair S, Mansouri S, et al. New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance [J]. Solar Energy Materials and Solar Cells, 2020, 215: 110601. |
28 | Zhou H, Zhang D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites [J]. Solar Energy, 2019, 184: 202-208. |
29 | Li W, Klemeš J J, Wang Q W, et al. Performance analysis of consolidated sorbent based closed thermochemical energy storage reactor for environmental sustainability[J]. Journal of Cleaner Production, 2020, 265: 121821. |
30 | Li W, Guo H, Zeng M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor [J]. Energy Conversion and Management, 2019, 198: 111843. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||