CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 2934-2956.DOI: 10.11949/0438-1157.20210110
• Special column for comprehensive utilization of salt lake resouces in Qinghai • Previous Articles Next Articles
GAO Wa1(),RAN Xiangkun1,ZHAO Hanqing1,ZHAO Yufei2
Received:
2021-01-18
Revised:
2021-04-06
Online:
2021-06-05
Published:
2021-06-05
Contact:
GAO Wa
通讯作者:
高娃
作者简介:
高娃(1987—),女,博士,讲师,基金资助:
CLC Number:
GAO Wa, RAN Xiangkun, ZHAO Hanqing, ZHAO Yufei. Research progress of catalytic materials based on Mg-based layered double hydroxides[J]. CIESC Journal, 2021, 72(6): 2934-2956.
高娃, 冉祥堃, 赵汗青, 赵宇飞. 镁基水滑石催化材料的研究进展[J]. 化工学报, 2021, 72(6): 2934-2956.
Add to citation manager EndNote|Ris|BibTeX
1 | Fan G L, Li F, Evans D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
2 | Feng J T, He Y F, Liu Y N, et al. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects[J]. Chemical Society Reviews, 2015, 44(15): 5291-5319. |
3 | He S, An Z, Wei M, et al. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance[J]. ChemInform, 2013, 44(36): 5912-5920. |
4 | Gao W, Zhao Y F, Chen H R, et al. Core–shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
5 | Li Y W, Gao W, Peng M, et al. Interfacial Fe5C2 -Cu catalysts toward low-pressure syngas conversion to long-chain alcohols[J]. Nature Communications, 2020, 11: 61. |
6 | Gao W, Zhao Y F, Liu J M, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5): 1324. |
7 | Li H P, Yang T X, Jiang Y W, et al. Synthesis of supported Pd nanocluster catalyst by spontaneous reduction on layered double hydroxide[J]. Journal of Catalysis, 2020, 385: 313-323. |
8 | Liu Y N, Zhao J Y, He Y F, et al. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: role of acidic and basic sites[J]. Journal of Catalysis, 2017, 348: 135-145. |
9 | He Y F, Liang L L, Liu Y N, et al. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst[J]. Journal of Catalysis, 2014, 309: 166-173. |
10 | Xi Y Z, Davis R J. Influence of water on the activity and stability of activated MgAl hydrotalcites for the transesterification of tributyrin with methanol[J]. Journal of Catalysis, 2008, 254(2): 190-197. |
11 | Choudary B M, Lakshmi Kantam M, Neeraja V, et al. Layered double hydroxide fluoride: a novel solid base catalyst for C—C bond formation[J]. Green Chemistry, 2001, 3(5): 257-260. |
12 | Choudary B M, Lakshmi Kantam M, Venkat Reddy C R, et al. The first example of Michael addition catalysed by modified Mg-Al hydrotalcite[J]. Journal of Molecular Catalysis A: Chemical, 1999, 146(1/2): 279-284. |
13 | Ezeh C I, Tomatis M, Yang X G, et al. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness[J]. Ultrasonics Sonochemistry, 2018, 40: 341-352. |
14 | Kuljiraseth J, Wangriya A, Malones J M C, et al. Synthesis and characterization of AMO LDH-derived mixed oxides with various Mg/Al ratios as acid-basic catalysts for esterification of benzoic acid with 2-ethylhexanol[J]. Applied Catalysis B: Environmental, 2019, 243: 415-427. |
15 | Pérez-Barrado E, Pujol M C, Aguiló M, et al. Influence of acid-base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols[J]. Chemical Engineering Journal, 2015, 264: 547-556. |
16 | Xu S, Liao M C, Zeng H Y, et al. Magnetic hydrotalcites as solid basic catalysts for cellulose hydrolysis[J]. Applied Clay Science, 2015, 115: 124-131. |
17 | Wang Z, Fongarland P, Lu G Z, et al. Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: investigation of water tolerance[J]. Journal of Catalysis, 2014, 318: 108-118. |
18 | 郭军, 矫庆泽, 沈剑平, 等. 杂多阴离子柱撑水滑石的合成、热稳定性、酸碱性研究[J]. 化学学报, 1996, 54(4): 357-362. |
Guo J, Jiao Q Z, Shen J P, et al. Studies on synthesis, thermal stabilities and acid-base properties of heteropolyanions pillared layered double hydroxides[J]. Acta Chimica Sinica, 1996, 54(4): 357-362. | |
19 | Liu P, Wang H, Feng Z C, et al. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins[J]. Journal of Catalysis, 2008, 256(2): 345-348. |
20 | Liu P, Wang C H, Li C. Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant[J]. Journal of Catalysis, 2009, 262(1): 159-168. |
21 | Zhao S, Xu J H, Wei M, et al. Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity[J]. Green Chemistry, 2011, 13(2): 384-389. |
22 | Li T F, Wang Z L, Chen W, et al. Rational design of a polyoxometalate intercalated layered double hydroxide: highly efficient catalytic epoxidation of allylic alcohols under mild and solvent-free conditions[J]. Chemistry - A European Journal, 2017, 23(5): 1069-1077. |
23 | Li T F, Zhang W, Chen W, et al. Modular polyoxometalate-layered double hydroxides as efficient heterogeneous sulfoxidation and epoxidation catalysts[J]. ChemCatChem, 2018, 10(1): 188-197. |
24 | 李腾飞, 王泽林, 许艳旗, 等. 多酸插层水滑石复合材料的新进展[J]. 中国科学: 化学, 2017, 47(4): 451-464. |
Li T F, Wang Z L, Xu Y Q, et al. Recent progress in polyoxometalate-intercalated layered double hydroxides composite materials[J]. Scientia Sinica (Chimica), 2017, 47(4): 451-464. | |
25 | Bai X L, Huang X, Wen L, et al. A new strategy for the selective oxidation of alcohols catalyzed by a polyoxometalate-based hybrid surfactant in biphasic systems[J]. Chemical Communications, 2019, 55(25): 3598-3601. |
26 | Subramanian T, Dhakshinamoorthy A, Pitchumani K. Amino acid intercalated layered double hydroxide catalyzed chemoselective methylation of phenols and thiophenols with dimethyl carbonate[J]. Tetrahedron Letters, 2013, 54(52): 7167-7170. |
27 | Shi H M, Yu C G, He J. Constraining titanium tartrate in the interlayer space of layered double hydroxides induces enantioselectivity[J]. Journal of Catalysis, 2010, 271(1): 79-87. |
28 | Shi H M, Yu C G, He J. On the structure of layered double hydroxides intercalated with titanium tartrate complex for catalytic asymmetric sulfoxidation[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17819-17828. |
29 | Wang J Z, Zhao L W, Shi H M, et al. Highly enantioselective and efficient asymmetric epoxidation catalysts: inorganic nanosheets modified with α-amino acids as ligands[J]. Angewandte Chemie International Edition, 2011, 50(39): 9171-9176. |
30 | Liu H, An Z, He J. Nanosheet-enhanced rhodium(Ⅲ)-catalysis in C–H activation[J]. ACS Catalysis, 2014, 4(10): 3543-3550. |
31 | Leung D W J, Chen C P, Buffet J C, et al. Correlations of acidity-basicity of solvent treated layered double hydroxides/oxides and their CO2 capture performance[J]. Dalton Transactions, 2020, 49(27): 9306-9311. |
32 | Pang J F, Zheng M Y, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
33 | 黄艳丽, 李晓东, 黄伟. Mg/Al比对CH4-CO2重整制合成气 Mg(Ni, Al)O复合氧化物催化剂性能的影响[J]. 天然气化工(C1化学与化工), 2019, 44(6): 8-13, 19. |
Huang Y L, Li X D, Huang W. Effect of Mg/Al ratio on catalytic performance of Mg(Ni, Al)O composite oxide catalyst for CH4-CO2 reforming[J]. Natural Gas Chemical Industry, 2019, 44(6): 8-13, 19. | |
34 | 王琴, 李枫, 赵海宏, 等. 过渡金属改性Mg-Al基固体碱催化剂上碳酸丙烯酯与甲醇合成碳酸二甲酯的研究[J]. 燃料化学学报, 2020, 48(4): 448-455. |
Wang Q, Li F, Zhao H H, et al. Preparation of Mg-Al based solid base for the transesterification of propylene carbonate and methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 448-455. | |
35 | Wang D F, Zhang X L, Liu C L, et al. Transition metal-modified mesoporous Mg-Al mixed oxides: stable base catalysts for the synthesis of diethyl carbonate from ethyl carbamate and ethanol[J]. Applied Catalysis A: General, 2015, 505: 478-486. |
36 | Wang D F, Zhang X L, Cong X S, et al. Influence of Zr on the performance of Mg-Al catalysts via hydrotalcite-like precursors for the synthesis of glycerol carbonate from urea and glycerol[J]. Applied Catalysis A: General, 2018, 555: 36-46. |
37 | Wang H M, Bing W H, Chen C Y, et al. Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction[J]. Chinese Journal of Catalysis, 2020, 41(8): 1279-1287. |
38 | 王军, 赵妍, 邹欣, 等. KF改性MgAl水滑石催化酯交换合成碳酸乙烯酯[J]. 化工进展, 2020, 39(7): 2670-2676. |
Wang J, Zhao Y, Zou X, et al. Synthesis of ethylene carbonate by transesterification over KF modified MgAl hydrotalcite catalyst[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2670-2676. | |
39 | Lei X D, Lu W, Peng Q, et al. Activated MgAl-layered double hydroxide as solid base catalysts for the conversion of fatty acid methyl esters to monoethanolamides[J]. Applied Catalysis A: General, 2011, 399(1/2): 87-92. |
40 | Evans D, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun., 2006, 37: 485-496. |
41 | Hidalgo J M, Jiménez-Sanchidrián C, Ruiz J R. Delaminated layered double hydroxides as catalysts for the Meerwein-Ponndorf-Verley reaction[J]. Applied Catalysis A: General, 2014, 470: 311-317. |
42 | Qiu X H, Sasaki K, Osseo-Asare K, et al. Sorption of H3BO3/ B(OH)4- on calcined LDHs including different divalent metals[J]. Journal of Colloid and Interface Science, 2015, 445: 183-194. |
43 | 张曼, 赵云良, 吴飞达. 焙烧态Ca-Mg-Al类水滑石的制备及其吸附As(Ⅴ)的研究[J]. 硅酸盐通报, 2018, 37(4): 1344-1349, 1354. |
Zhang M, Zhao Y L, Wu F D. Preparing calcined Ca-Mg-Al hydrotalcite-like compound for adsorption of As(Ⅴ) in water[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1344-1349, 1354. | |
44 | Hou T L, Yan L G, Li J, et al. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent[J]. Chemical Engineering Journal, 2020, 384: 123331. |
45 | Li J, Yan L G, Yang Y T, et al. Insight into the adsorption mechanisms of aqueous hexavalent chromium by EDTA intercalated layered double hydroxides: XRD, FTIR, XPS, and zeta potential studies[J]. New Journal of Chemistry, 2019, 43(40): 15915-15923. |
46 | Li J, Yu H Q, Zhang X, et al. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(Ⅵ) and Congo red: adsorptive and mechanistic study[J]. Frontiers of Environmental Science & Engineering, 2020, 14(3): 1-13. |
47 | Ma L J, Wang Q, Islam S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion[J]. Journal of the American Chemical Society, 2016, 138(8): 2858-2866. |
48 | Ma L J, Islam S M, Xiao C L, et al. Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS42- intercalated layered double hydroxide[J]. Journal of the American Chemical Society, 2017, 139(36): 12745-12757. |
49 | Ma L J, Islam S M, Liu H Y, et al. Selective and efficient removal of toxic oxoanions of As(Ⅲ), As(V), and Cr(Ⅵ) by layered double hydroxide intercalated with MoS42-[J]. Chemistry of Materials, 2017, 29(7): 3274-3284. |
50 | Shuan D L, Wang D D, Wu X F, et al. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides[J]. Chinese Journal of Catalysis, 2020, 41(4): 550-560. |
51 | Genty E, Cousin R, Capelle S, et al. Catalytic oxidation of toluene and CO over nanocatalysts derived from hydrotalcite-like compounds (X62+Al23+): effect of the bivalent cation[J]. European Journal of Inorganic Chemistry, 2012, (16): 2802-2811. |
52 | Aguilera D A, Perez A, Molina R, et al. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 144-150. |
53 | Palacio L A, Velásquez J, Echavarría A, et al. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 407-413. |
54 | Lara-García H A, Gao W L, Gómez-Cortés A, et al. High and efficient CO2 capture in molten nitrate-modified Mg-Al-palmitate layered double oxides at high pressures and elucidation of carbonation mechanisms by in situ DRIFT spectroscopy analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5501-5509. |
55 | Gao W L, Zhou T T, Wang Q. Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions[J]. Chemical Engineering Journal, 2018, 336: 710-720. |
56 | Zhang S Y, Fan G L, Li F. Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1, 4-cyclohexane dicarboxylate[J]. Green Chemistry, 2013, 15(9): 2389. |
57 | Xia S X, Zheng L P, Wang L N, et al. Hydrogen-free synthesis of 1, 2-propanediol from glycerol over Cu-Mg-Al catalysts[J]. RSC Advances, 2013, 3(37): 16569-16576.. |
58 | Xia S X, Nie R F, Lu X Y, et al. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover[J]. Journal of Catalysis, 2012, 296: 1-11. |
59 | Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. Journal of the American Chemical Society, 2010, 132(42): 14739-14741. |
60 | Wang L Y, Liu J F, Zhou Y X, et al. Synthesis of CoFe alloy nanoparticles embedded in a MgO crystal matrix using a single-source inorganic precursor[J]. Chemical Communications, 2010, 46(22): 3911-3913. |
61 | Gao W, Li C M, Chen H, et al. Supported nickel–iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O[J]. Green Chemistry, 2014, 16(3): 1560-1568. |
62 | He Y F, Fan J X, Feng J T, et al. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties[J]. Journal of Catalysis, 2015, 331: 118-127. |
63 | Jin X J, Koizumi Y, Yamaguchi K, et al. Selective synthesis of primary anilines from cyclohexanone oximes by the concerted catalysis of a Mg-Al layered double hydroxide supported Pd catalyst[J]. Journal of the American Chemical Society, 2017, 139(39): 13821-13829. |
64 | Zhu Y R, An Z, He J. Single-atom and small-cluster Pt induced by Sn (Ⅳ) sites confined in an LDH lattice for catalytic reforming[J]. Journal of Catalysis, 2016, 341: 44-54. |
65 | Zhu Y R, An Z, Song H Y, et al. Lattice-confined Sn (Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
66 | Belskaya O B, Stepanova L N, Nizovskii A I, et al. The effect of tin on the formation and properties of Pt/MgAl(Sn)Ox catalysts for dehydrogenation of alkanes[J]. Catalysis Today, 2019, 329: 187-196. |
67 | Zhang J B, Li X L, Xu M, et al. Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature[J]. Science Bulletin, 2019, 64(23): 1764-1772. |
68 | Zhang X, Cui G Q, Feng H S, et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis[J]. Nature Communications, 2019, 10: 5812. |
69 | Dimitratos N, Lopez-Sanchez J A, Hutchings G J. Selective liquid phase oxidation with supported metal nanoparticles[J]. Chem. Sci., 2012, 3(1): 20-44. |
70 | Mitsudome T, Noujima A, Mizugaki T, et al. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Advanced Synthesis & Catalysis, 2009, 351(11/12): 1890-1896. |
71 | Zhang F Z, Zhao X F, Feng C H, et al. Crystal-face-selective supporting of gold nanoparticles on layered double hydroxide as efficient catalyst for epoxidation of styrene[J]. ACS Catalysis, 2011, 1(4): 232-237. |
72 | Wang L, Zhang J, Meng X J, et al. Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide[J]. Catalysis Today, 2011, 175(1): 404-410. |
73 | Du Y, Wooler B, Weiss B, et al. A unique method to disperse Au nanoparticles at ultra-high loading via LDH intercalation chemistry[J]. Dalton Transactions, 2019, 48(7): 2505-2509. |
74 | An Z, MA H H, Han H B, et al. Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone: layered double hydroxide supported Au[J]. ACS Catalysis, 2020, 10(21): 12437-12453. |
75 | Wang Z T, Song Y J, Zou J H, et al. The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol[J]. Catalysis Science & Technology, 2018, 8(1): 268-275. |
76 | Wang J Y, Mei X Y, Huang L, et al. Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO2 adsorbent[J]. Journal of Energy Chemistry, 2015, 24(2): 127-137. |
77 | Álvarez M G, Frey A M, Bitter J H, et al. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: glycerol to glycerol carbonate and self-condensation of acetone[J]. Applied Catalysis B: Environmental, 2013, 134/135: 231-237. |
78 | Zou Y D, Wang P Y, Yao W, et al. Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater[J]. Chemical Engineering Journal, 2017, 330: 573-584. |
79 | Guo Y J, Fan L P, Liu M R, et al. Nitrogen-doped carbon quantum dots-decorated Mg-Al layered double hydroxide-supported gold nanocatalysts for efficient base-free oxidation of benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 636-646. |
80 | Yang Q, Xu Q, Jiang H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. |
81 | Lv Z, Yang S M, Chen L, et al. Enhanced removal of uranium(Ⅵ) from aqueous solution by a novel LDH@MOF-76 composite[J]. Scientia Sinica Chimica, 2019, 49(1): 53-64. |
82 | Li Z H, Shao M F, Zhou L, et al. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction[J]. Advanced Materials, 2016, 28(12): 2337-2344. |
83 | Li J B, Chen C Y, Chen Y W, et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries[J]. Advanced Energy Materials, 2019, 9(42): 1901935. |
84 | Qiu C H, Hao X J, Tan L, et al. 500 nm induced tunable syngas synthesis from CO2 photoreduction by controlling heterojunction concentration[J]. Chemical Communications, 2020, 56(40): 5354-5357. |
85 | Gao Y P, Wei Z N, Xu J. High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-layered double hydroxides[J]. Electrochimica Acta, 2020, 330: 135195. |
86 | Dong J N, Zhang X N, Huang J Y, et al. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 412: 128556. |
87 | Takahashi Y, Uchida H, Kameda T, et al. Synthesis of MnO2/Mg-Al layered double hydroxide and evaluation of its NO-removal performance[J]. Journal of Alloys and Compounds, 2021, 867: 159038. |
88 | Iqbal K, Iqbal A, Kirillov A M, et al. A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants[J]. Journal of Materials Chemistry A, 2017, 5(14): 6716-6724. |
89 | Jiang B B, Xi Z X, Lu F P, et al. Ce/MgAl mixed oxides derived from hydrotalcite LDH precursors as highly efficient catalysts for ketonization of carboxylic acid[J]. Catalysis Science & Technology, 2019, 9(22): 6335-6344. |
90 | Shamsayei M, Yamini Y, Asiabi H. Layer-by-layer assembly of layered double hydroxide/histidine/δ-MnO2 nanosheets: synthesis, characterization, and applications[J]. Applied Clay Science, 2020, 188: 105540. |
91 | Mi F, Chen X T, Ma Y W, et al. Facile synthesis of hierarchical core-shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols[J]. Chemical Communications, 2011, 47(48): 12804-12806. |
92 | Shan R R, Yan L G, Yang K, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal, 2014, 252: 38-46. |
93 | Huang Q Q, Chen Y, Yu H Q, et al. Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+[J]. Chemical Engineering Journal, 2018, 341: 1-9. |
94 | Hou T L, Yan L G, Yang S Y, et al. Efficient removal of graphene oxide by Fe3O4/MgAl-layered double hydroxide and oxide from aqueous solution[J]. Journal of Molecular Liquids, 2019, 284: 300-306. |
95 | Cui L M, Wang Y G, Gao L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(Ⅱ), Hg(Ⅱ) and Cu(Ⅱ) in water treatment: adsorption mechanism and separation property[J]. Chemical Engineering Journal, 2015, 281: 1-10. |
96 | 李嘉雯, 郝瑞霞, 李宏康, 等. 磁性Mg/Al-LDHs制备条件对其吸附除磷性能的影响[J]. 环境科学学报, 2020, 40(2): 520-526. |
Li J W, Hao R X, Li H K, et al. Adsorption performance of phosphorus by magnetic Mg/Al-LDHs prepared under different conditions[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 520-526. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[3] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[4] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[5] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[6] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[7] | Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[8] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
[9] | Yuming LI, Ziye LIU, Qiyang ZHANG, Yajun WANG, Guoqing CUI, Guiyuan JIANG, Dehua HE. Preparation of nitrogen-doped carbon materials and their applications in catalysis [J]. CIESC Journal, 2021, 72(8): 3919-3932. |
[10] | DU Dongdong, LIU Huang, MA Ruoyu, FENG Yongjun, LI Dianqing, TANG Pinggui. Performance of MgAl layered double hydroxides light stabilizer assembled via intermolecular forces [J]. CIESC Journal, 2021, 72(6): 3095-3104. |
[11] | TIAN Rui, WANG Peili, LYU Chao, DUAN Xue. Three-dimensional fluorescent evaluation on dispersion state for inorganic nanofiller in organic-inorganic composites [J]. CIESC Journal, 2021, 72(6): 3002-3013. |
[12] | SONG Yihui, LEI Zhiyi, FAN Guoli, YANG Lan, LIN Yanjun, LI Feng. Preparation and property of high specific surface solid base catalyst based on LiAl-LDH /C hybrid precursor [J]. CIESC Journal, 2021, 72(6): 3084-3094. |
[13] | ZHOU Shijie, REN Zhen, YANG Yusen, WEI Min. Preparation and application of metal oxides with various morphology for industrial catalysis [J]. CIESC Journal, 2021, 72(6): 2972-3001. |
[14] | MA Jiazhuang, CHEN Ying, LI Kaitao, LIN Yanjun. Research progress on magnesium-based intercalated functional materials [J]. CIESC Journal, 2021, 72(6): 2922-2933. |
[15] | WANG Yuejie, LI Lingling, HE Chunhong. Review on the bioleaching of spent refinery catalysts for metals removal [J]. CIESC Journal, 2021, 72(2): 901-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||