CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3261-3269.DOI: 10.11949/0438-1157.20201597
• Thermodynamics • Previous Articles Next Articles
XU Chenyi1(),YE Gongran1,GUO Haowen1,ZHUANG Yuan1,GUO Zhikai2,HAN Xiaohong1(),CHEN Guangming1
Received:
2020-11-03
Revised:
2020-12-22
Online:
2021-06-05
Published:
2021-06-05
Contact:
HAN Xiaohong
许晨怡1(),叶恭然1,郭豪文1,庄园1,郭智恺2,韩晓红1(),陈光明1
通讯作者:
韩晓红
作者简介:
许晨怡(1995—),女,硕士研究生,基金资助:
CLC Number:
XU Chenyi, YE Gongran, GUO Haowen, ZHUANG Yuan, GUO Zhikai, HAN Xiaohong, CHEN Guangming. Experimental and theoretical study on liquid viscosity of R1336mzz(E)[J]. CIESC Journal, 2021, 72(6): 3261-3269.
许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269.
Add to citation manager EndNote|Ris|BibTeX
阶段 | 原则 | 主要制冷剂 |
---|---|---|
第一阶段(1830—1930年) | 能用即可 | 自然制冷剂 |
第二阶段(1931—1990年) | 提高制冷效率、安全性和耐久性 | 氯氟烃(CFCs)、氢氯氟烃(HCFCs)、氢氟烃(HFCs) |
第三阶段(1991—2010年) | 对臭氧层无破坏作用 | 烃类(HCs)、氢氯氟烃(HCFCs)、氢氟烃(HFCs) |
第四阶段(2011年至今) | 零臭氧层消耗潜值(ODP)、低全球变暖潜值 (GWP)、较高的制冷效率 | 低GWP的氢氟烃(HFCs)、不饱和氢氟烃类(HFOs)、 烃类(HCs)、自然制冷剂 |
Table 1 Development history of refrigerants
阶段 | 原则 | 主要制冷剂 |
---|---|---|
第一阶段(1830—1930年) | 能用即可 | 自然制冷剂 |
第二阶段(1931—1990年) | 提高制冷效率、安全性和耐久性 | 氯氟烃(CFCs)、氢氯氟烃(HCFCs)、氢氟烃(HFCs) |
第三阶段(1991—2010年) | 对臭氧层无破坏作用 | 烃类(HCs)、氢氯氟烃(HCFCs)、氢氟烃(HFCs) |
第四阶段(2011年至今) | 零臭氧层消耗潜值(ODP)、低全球变暖潜值 (GWP)、较高的制冷效率 | 低GWP的氢氟烃(HFCs)、不饱和氢氟烃类(HFOs)、 烃类(HCs)、自然制冷剂 |
黏度测量仪器 | 基本原理 | 优缺点分析 |
---|---|---|
毛细管黏度计 | 测量已知体积的液体在重力或外力作用下流过毛细管上下刻度线的时间 | 结构简单、操作简便、精度较高。需要采用已知黏度的液体进行校准;易挥发流体在密闭环境下测量,需要考虑承压问题;抽吸法会改变易挥发混合流体的组分 |
旋转式黏度计 | 测量固体在黏性流体中以一定的角速度旋转所需要的已知力或扭矩的旋转速率 | 测量范围广,可对同一试样在不同剪切速率下进行多次测量,对性能随温度变化的材料进行连续测量。但对牛顿流体的测量精度较低 |
落球黏度计 | 固体在重力作用下通过黏性流体下落,测量固体的终端速度 | 落体的Re会影响测量精度,获得高精度数据耗时较长 |
振动式黏度计 | 测量沉浸在黏性流体中的振动机电谐振器的阻尼 | 所需的样品量少,灵敏度高,操作简便,可连续读数,范围广,测试液的流通性强,易于清理 |
孔隙黏度计 | 测量固定体积的液体流过孔口的时间 | 简便易用。无法进行绝对测量,无法确定非牛顿流体的黏度 |
超声波黏度计 | 测量球体在黏性液体中的振荡运动产生的电动势 | 流体不经过仪器内部,测量方便;可以进行瞬时和连续的黏度测量 |
Table 2 Comparison of viscometers
黏度测量仪器 | 基本原理 | 优缺点分析 |
---|---|---|
毛细管黏度计 | 测量已知体积的液体在重力或外力作用下流过毛细管上下刻度线的时间 | 结构简单、操作简便、精度较高。需要采用已知黏度的液体进行校准;易挥发流体在密闭环境下测量,需要考虑承压问题;抽吸法会改变易挥发混合流体的组分 |
旋转式黏度计 | 测量固体在黏性流体中以一定的角速度旋转所需要的已知力或扭矩的旋转速率 | 测量范围广,可对同一试样在不同剪切速率下进行多次测量,对性能随温度变化的材料进行连续测量。但对牛顿流体的测量精度较低 |
落球黏度计 | 固体在重力作用下通过黏性流体下落,测量固体的终端速度 | 落体的Re会影响测量精度,获得高精度数据耗时较长 |
振动式黏度计 | 测量沉浸在黏性流体中的振动机电谐振器的阻尼 | 所需的样品量少,灵敏度高,操作简便,可连续读数,范围广,测试液的流通性强,易于清理 |
孔隙黏度计 | 测量固定体积的液体流过孔口的时间 | 简便易用。无法进行绝对测量,无法确定非牛顿流体的黏度 |
超声波黏度计 | 测量球体在黏性液体中的振荡运动产生的电动势 | 流体不经过仪器内部,测量方便;可以进行瞬时和连续的黏度测量 |
设备 | 型号 | 量程 | 精度 |
---|---|---|---|
铂电阻温度计 | WZPB-I | — | 0.001 K |
压力传感器 | PMP4010 | 0 ~ 3.5 MPa | 0.04 % F.S. |
机械秒表 | M504 | 0 ~ 15 min | 0.1 s |
一次恒温槽 | RTS-40T | -40 ~ 95℃ | 0.01℃ |
气相色谱仪 | GC1690T | — | 0.3 % |
电子天平 | BL-5000S | 0 ~ 5000 g | 0.01 g |
Table 3 Main instruments and equipment
设备 | 型号 | 量程 | 精度 |
---|---|---|---|
铂电阻温度计 | WZPB-I | — | 0.001 K |
压力传感器 | PMP4010 | 0 ~ 3.5 MPa | 0.04 % F.S. |
机械秒表 | M504 | 0 ~ 15 min | 0.1 s |
一次恒温槽 | RTS-40T | -40 ~ 95℃ | 0.01℃ |
气相色谱仪 | GC1690T | — | 0.3 % |
电子天平 | BL-5000S | 0 ~ 5000 g | 0.01 g |
临界温度TC/K | 临界密度ρC/(kg/m3) | 临界压力pC/kPa | 常压沸点Tb/K | 摩尔质量M/(g/mol) | 偏心因子ω |
---|---|---|---|---|---|
403.37 | 515.3 | 2766.4 | 280.58 | 164.05 | 0.4053 |
Table 4 Fundamental characteristic properties of R1336mzz(E) [7]
临界温度TC/K | 临界密度ρC/(kg/m3) | 临界压力pC/kPa | 常压沸点Tb/K | 摩尔质量M/(g/mol) | 偏心因子ω |
---|---|---|---|---|---|
403.37 | 515.3 | 2766.4 | 280.58 | 164.05 | 0.4053 |
T/K | k | t/s | ν/(mm2/s) | ηexp/(μPa·s) | ||
---|---|---|---|---|---|---|
279.238 | 1363.40 | 7.078 | 0.9946 | 441.7 | 0.283 | 389 |
283.214 | 1351.34 | 8.232 | 0.9938 | 425.2 | 0.272 | 370 |
288.184 | 1336.04 | 9.879 | 0.9927 | 405.1 | 0.258 | 348 |
293.183 | 1320.37 | 11.789 | 0.9914 | 387.5 | 0.246 | 328 |
298.138 | 1304.54 | 13.961 | 0.9898 | 369.0 | 0.234 | 307 |
303.250 | 1287.88 | 16.529 | 0.9880 | 350.8 | 0.221 | 287 |
308.106 | 1271.72 | 19.308 | 0.9859 | 336.3 | 0.211 | 270 |
313.077 | 1254.79 | 22.535 | 0.9833 | 321.0 | 0.200 | 253 |
323.091 | 1219.36 | 30.397 | 0.9769 | 295.1 | 0.182 | 223 |
333.166 | 1181.60 | 40.535 | 0.9678 | 274.4 | 0.167 | 198 |
Table 5 Experimental data of the liquid viscosity of R1336mzz(E)
T/K | k | t/s | ν/(mm2/s) | ηexp/(μPa·s) | ||
---|---|---|---|---|---|---|
279.238 | 1363.40 | 7.078 | 0.9946 | 441.7 | 0.283 | 389 |
283.214 | 1351.34 | 8.232 | 0.9938 | 425.2 | 0.272 | 370 |
288.184 | 1336.04 | 9.879 | 0.9927 | 405.1 | 0.258 | 348 |
293.183 | 1320.37 | 11.789 | 0.9914 | 387.5 | 0.246 | 328 |
298.138 | 1304.54 | 13.961 | 0.9898 | 369.0 | 0.234 | 307 |
303.250 | 1287.88 | 16.529 | 0.9880 | 350.8 | 0.221 | 287 |
308.106 | 1271.72 | 19.308 | 0.9859 | 336.3 | 0.211 | 270 |
313.077 | 1254.79 | 22.535 | 0.9833 | 321.0 | 0.200 | 253 |
323.091 | 1219.36 | 30.397 | 0.9769 | 295.1 | 0.182 | 223 |
333.166 | 1181.60 | 40.535 | 0.9678 | 274.4 | 0.167 | 198 |
参数 | 式(9) | 式(10) | 式(11) | 式(12) |
---|---|---|---|---|
A | 1.811 | -1.778 | 4.282 | -0.1488 |
B | 1164 | 3347 | -8.997 | -1252 |
C | — | -3.31×105 | -0.00626 | -177.4 |
D | — | — | 1.1350×10-6 | — |
AAD/% | 0.930 | 0.170 | 0.181 | 0.597 |
MAD/% | 1.693 | 0.311 | 0.390 | 1.492 |
Table 6 The correlation parameters, AAD and MAD of four viscosity models
参数 | 式(9) | 式(10) | 式(11) | 式(12) |
---|---|---|---|---|
A | 1.811 | -1.778 | 4.282 | -0.1488 |
B | 1164 | 3347 | -8.997 | -1252 |
C | — | -3.31×105 | -0.00626 | -177.4 |
D | — | — | 1.1350×10-6 | — |
AAD/% | 0.930 | 0.170 | 0.181 | 0.597 |
MAD/% | 1.693 | 0.311 | 0.390 | 1.492 |
T/K | ηexp/(μPa·s) | 式(9) | 式(10) | 式(11) | 式(12) | ||||
---|---|---|---|---|---|---|---|---|---|
ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ||
279.24 | 388.66 | 395.24 | 1.69 | 389.34 | 0.17 | 389.27 | 0.16 | 391.72 | 0.79 |
283.21 | 370.05 | 372.77 | 0.74 | 370.37 | 0.09 | 370.13 | 0.02 | 370.95 | 0.24 |
288.18 | 347.55 | 347.26 | -0.08 | 347.85 | 0.09 | 347.54 | 0.00 | 346.97 | -0.17 |
293.18 | 327.53 | 324.15 | -1.03 | 326.51 | -0.31 | 326.25 | -0.39 | 324.89 | -0.81 |
298.14 | 306.97 | 303.46 | -1.14 | 306.62 | -0.11 | 306.45 | -0.17 | 304.80 | -0.71 |
303.25 | 286.85 | 284.13 | -0.95 | 287.38 | 0.18 | 287.32 | 0.16 | 285.76 | -0.38 |
308.11 | 270.32 | 267.45 | -1.06 | 270.26 | -0.02 | 270.27 | -0.02 | 269.12 | -0.44 |
313.08 | 253.19 | 251.88 | -0.52 | 253.85 | 0.26 | 253.89 | 0.28 | 253.41 | 0.09 |
323.09 | 223.36 | 224.46 | 0.49 | 223.95 | 0.26 | 223.92 | 0.25 | 225.29 | 0.86 |
333.17 | 198.13 | 201.29 | 1.59 | 197.74 | -0.20 | 197.41 | -0.36 | 201.09 | 1.49 |
Table 7 The experimental data and correlation results of four viscosity models
T/K | ηexp/(μPa·s) | 式(9) | 式(10) | 式(11) | 式(12) | ||||
---|---|---|---|---|---|---|---|---|---|
ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ηcal/(μPa·s) | Δη/% | ||
279.24 | 388.66 | 395.24 | 1.69 | 389.34 | 0.17 | 389.27 | 0.16 | 391.72 | 0.79 |
283.21 | 370.05 | 372.77 | 0.74 | 370.37 | 0.09 | 370.13 | 0.02 | 370.95 | 0.24 |
288.18 | 347.55 | 347.26 | -0.08 | 347.85 | 0.09 | 347.54 | 0.00 | 346.97 | -0.17 |
293.18 | 327.53 | 324.15 | -1.03 | 326.51 | -0.31 | 326.25 | -0.39 | 324.89 | -0.81 |
298.14 | 306.97 | 303.46 | -1.14 | 306.62 | -0.11 | 306.45 | -0.17 | 304.80 | -0.71 |
303.25 | 286.85 | 284.13 | -0.95 | 287.38 | 0.18 | 287.32 | 0.16 | 285.76 | -0.38 |
308.11 | 270.32 | 267.45 | -1.06 | 270.26 | -0.02 | 270.27 | -0.02 | 269.12 | -0.44 |
313.08 | 253.19 | 251.88 | -0.52 | 253.85 | 0.26 | 253.89 | 0.28 | 253.41 | 0.09 |
323.09 | 223.36 | 224.46 | 0.49 | 223.95 | 0.26 | 223.92 | 0.25 | 225.29 | 0.86 |
333.17 | 198.13 | 201.29 | 1.59 | 197.74 | -0.20 | 197.41 | -0.36 | 201.09 | 1.49 |
T/K | ηcal/(μPa·s) | |||
---|---|---|---|---|
式(9) | 式(10) | 式(11) | 式(12) | |
273.15 | 433.7 | 420.0 | 420.6 | 426.6 |
278.15 | 401.7 | 394.7 | 394.7 | 397.7 |
283.15 | 373.1 | 370.7 | 370.4 | 371.3 |
288.15 | 347.4 | 348.0 | 347.7 | 347.1 |
293.15 | 324.3 | 326.6 | 326.4 | 325.0 |
298.15 | 303.4 | 306.6 | 306.4 | 304.7 |
303.15 | 284.5 | 287.7 | 287.7 | 286.1 |
308.15 | 267.3 | 270.1 | 270.1 | 269.0 |
313.15 | 251.7 | 253.6 | 253.7 | 253.2 |
318.15 | 237.4 | 238.2 | 238.2 | 238.6 |
323.15 | 224.3 | 223.8 | 223.7 | 225.1 |
328.15 | 212.3 | 210.3 | 210.2 | 212.7 |
333.15 | 201.3 | 197.8 | 197.4 | 201.1 |
338.15 | 191.2 | 186.1 | 185.5 | 190.4 |
343.15 | 181.8 | 175.1 | 174.3 | 180.4 |
348.15 | 173.2 | 165.0 | 163.8 | 171.2 |
353.15 | 165.2 | 155.4 | 153.9 | 162.6 |
358.15 | 157.8 | 146.6 | 144.7 | 154.5 |
363.15 | 150.9 | 138.3 | 136.0 | 147.0 |
368.15 | 144.4 | 130.6 | 127.9 | 140.0 |
373.15 | 138.4 | 123.4 | 120.2 | 133.4 |
378.15 | 132.8 | 116.6 | 113.1 | 127.3 |
383.15 | 127.6 | 110.3 | 106.3 | 121.5 |
388.15 | 122.7 | 104.4 | 100.0 | 116.1 |
393.15 | 118.1 | 98.9 | 94.1 | 111.1 |
398.15 | 113.8 | 93.8 | 88.5 | 106.3 |
403.15 | 109.8 | 89.0 | 83.3 | 101.8 |
403.37 | 109.6 | 88.8 | 83.0 | 101.6 |
Table 8 The extrapolation results of the four models of R1336mzz(E) viscosity
T/K | ηcal/(μPa·s) | |||
---|---|---|---|---|
式(9) | 式(10) | 式(11) | 式(12) | |
273.15 | 433.7 | 420.0 | 420.6 | 426.6 |
278.15 | 401.7 | 394.7 | 394.7 | 397.7 |
283.15 | 373.1 | 370.7 | 370.4 | 371.3 |
288.15 | 347.4 | 348.0 | 347.7 | 347.1 |
293.15 | 324.3 | 326.6 | 326.4 | 325.0 |
298.15 | 303.4 | 306.6 | 306.4 | 304.7 |
303.15 | 284.5 | 287.7 | 287.7 | 286.1 |
308.15 | 267.3 | 270.1 | 270.1 | 269.0 |
313.15 | 251.7 | 253.6 | 253.7 | 253.2 |
318.15 | 237.4 | 238.2 | 238.2 | 238.6 |
323.15 | 224.3 | 223.8 | 223.7 | 225.1 |
328.15 | 212.3 | 210.3 | 210.2 | 212.7 |
333.15 | 201.3 | 197.8 | 197.4 | 201.1 |
338.15 | 191.2 | 186.1 | 185.5 | 190.4 |
343.15 | 181.8 | 175.1 | 174.3 | 180.4 |
348.15 | 173.2 | 165.0 | 163.8 | 171.2 |
353.15 | 165.2 | 155.4 | 153.9 | 162.6 |
358.15 | 157.8 | 146.6 | 144.7 | 154.5 |
363.15 | 150.9 | 138.3 | 136.0 | 147.0 |
368.15 | 144.4 | 130.6 | 127.9 | 140.0 |
373.15 | 138.4 | 123.4 | 120.2 | 133.4 |
378.15 | 132.8 | 116.6 | 113.1 | 127.3 |
383.15 | 127.6 | 110.3 | 106.3 | 121.5 |
388.15 | 122.7 | 104.4 | 100.0 | 116.1 |
393.15 | 118.1 | 98.9 | 94.1 | 111.1 |
398.15 | 113.8 | 93.8 | 88.5 | 106.3 |
403.15 | 109.8 | 89.0 | 83.3 | 101.8 |
403.37 | 109.6 | 88.8 | 83.0 | 101.6 |
1 | Nations United. Paris Agreement[EB/OL].2015. . |
2 | United Nations Environment Programme. Amendments to the Montreal Protocol on Substances that Deplete the Ozone Layer[EB/OL].2017. . |
3 | Gao N, Wang X H, Xuan Y M, et al. An artificial neural network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants[J]. International Journal of Refrigeration, 2019, 98: 381-387. |
4 | Wang X H, Yan Y Y, Li B, et al. Prospect of solar-driven ejector-compression hybrid refrigeration system with low GWP refrigerants in summer of Guangzhou and Beijing[J]. International Journal of Refrigeration, 2020, 117: 230-236. |
5 | Wu X, Dang C B, Xu S M, et al. State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants[J]. International Journal of Refrigeration, 2019, 108: 209-223. |
6 | Wang X H, Yan Y Y, Wright E, et al. Prospect evaluation of low-GWP refrigerants R1233zd(E) and R1336mzz(Z) used in solar-driven ejector-vapor compression hybrid refrigeration system[J]. Journal of Thermal Science, 2020: 1-9. |
7 | Tanaka K, Ishikawa J, Kontomaris K K. Thermodynamic properties of HFO-1336mzz(E) (trans-1, 1, 1, 4, 4, 4-hexafluoro-2-butene) at saturation conditions[J]. International Journal of Refrigeration, 2017, 82: 283-287. |
8 | Longo G A, Righetti G, Zilio C. Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants[J]. International Journal of Heat and Mass Transfer, 2019, 139: 31-38. |
9 | Mendoza-Miranda J M, Salazar-Hernández C, Carrera-Cerritos R, et al. Variable speed liquid chiller drop-in modeling for predicting energy performance of R1234yf as low-GWP refrigerant[J]. International Journal of Refrigeration, 2018, 93: 144-158. |
10 | Raabe G. Molecular simulation studies on the vapor–liquid equilibria of the cis- and trans-HCFO-1233zd and the cis- and trans-HFO-1336mzz[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2412-2419. |
11 | Tanaka K, Ishikawa J, Kontomaris K K. pρT property of HFO-1336mzz(E) (trans-1, 1, 1, 4, 4, 4-hexafluoro-2-butene)[J]. Journal of Chemical & Engineering Data, 2017, 62(8): 2450-2453. |
12 | Tanaka K, Akasaka R, Sakaue E. PVT properties and vapor pressures of HFO-1336mzz(E) [C]//3rd International Seminar on ORC Power Systems. Brussels, Belgium, 2015. |
13 | Boonaert E, Valtz A, Brocus J, et al. Vapor-liquid equilibrium measurements for 5 binary mixtures involving HFO-1336mzz(E) at temperatures from 313 to 353 K and pressures up to 2.735 MPa[J]. International Journal of Refrigeration, 2020, 114: 210-220. |
14 | Juhasz J R. Novel working fluid, HFO-1336mzz(E), for use in waste heat recovery application[C]// 12th IEA Heat Pump Conference. 2017. |
15 | Yang J Y, Ye Z H, Yu B B, et al. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)[J]. Energy, 2019, 173: 721-731. |
16 | Zhi L H, Hu P, Chen L X, et al. Viscosity prediction for six pure refrigerants using different artificial neural networks[J]. International Journal of Refrigeration, 2018, 88: 432-440. |
17 | 国家质量监督检验检疫总局. 标准毛细管黏度计检定规程:[S]. 北京: 中国质检出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Verification regulation of standard capillary viscometer:[S]. Beijing:China Quality Supervision and Inspection Press, 2012. | |
18 | 国家质量监督检验检疫总局. 工作毛细管黏度计检定规程:[S]. 北京: 中国质检出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Routine capillary viscometers: [S]. Beijing:China Quality Supervision and Inspection Press, 2016. | |
19 | Cousins D S, Laesecke A. Sealed gravitational capillary viscometry of dimethyl ether and two next-generation alternative refrigerants[J]. Journal of Research of the National Institute of Standards and Technology, 2012, 117: 231-256. |
20 | 吴江涛, 毕胜山, 刘志刚. 一种适用于低沸点液体黏度测量的金属毛细管黏度计[J]. 工程热物理学报, 2004, 25(6): 921-924. |
Wu J T, Bi S S, Liu Z G. A new metal capillary viscometer for the volatile liquid[J]. Journal of Engineering Thermophysics, 2004, 25(6): 921-924. | |
21 | 韩晓红, 袁晓蓉, 张子捷, 等. 一种旋转式毛细管黏度计: 201120495024.0[P]. 2012-07-17. |
Han X H, Yuan X R, Zhang Z J, et al. A rotary capillary viscometer: 201120495024.0[P]. 2012-07-17. | |
22 | 袁晓蓉, 高赞军, 王学会, 等. 一种适用于低沸点混合制冷剂黏度测量装置的研制[J]. 制冷学报, 2014, 35(5): 1-6. |
Yuan X R, Gao Z J, Wang X H, et al. Development of a viscosity measuring device for low boiling point refrigerant mixtures[J]. Journal of Refrigeration, 2014, 35(5): 1-6. | |
23 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
24 | Hankinson R W, Thomson G H. A new correlation for saturated densities of liquids and their mixtures[J]. AIChE Journal, 1979, 25(4): 653-663. |
25 | Viswanath D S, Ghosh T K, Prasad D H L, et al. Viscosity of Liquids Theory, Estimation, Experiment, and Data[M]. Springer, 2007. |
26 | Girifalco L A. Temperature dependence of viscosity and its relation to vapor pressure for associated liquids[J]. The Journal of Chemical Physics, 1955, 23(12): 2446-2447. |
27 | Yaws C L, Lin X Y, Bu L. Calculate viscosities for 355 liquids[J]. Chemical Engineering, 1994, 101: 4. |
28 | 赵军, 戴传山. 地源热泵技术与建筑节能应用[M]. 北京: 中国建筑工业出版社, 2007. |
Zhao J, Dai C S. Design and Application of Ground Source Heat Pump System[M]. Beijing: China Architecture & Building Press, 2007. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[3] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
[4] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[7] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[8] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[9] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[10] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[11] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[12] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[13] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[14] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[15] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||