CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 352-361.DOI: 10.11949/0438-1157.20211280
• Biochemical engineering and technology • Previous Articles Next Articles
Wei SONG1(),Jinhui WANG2(),Guipeng HU1,Xiulai CHEN2,Liming LIU2,Jing WU1()
Received:
2021-09-03
Revised:
2021-10-11
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jing WU
宋伟1(),王金辉2(),胡贵鹏1,陈修来2,刘立明2,吴静1()
通讯作者:
吴静
作者简介:
宋伟(1991—),男,博士,助理研究员,基金资助:
CLC Number:
Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine[J]. CIESC Journal, 2022, 73(1): 352-361.
宋伟, 王金辉, 胡贵鹏, 陈修来, 刘立明, 吴静. 多酶级联催化合成(R)-β-酪氨酸[J]. 化工学报, 2022, 73(1): 352-361.
1 | Zabriskie T M, Klocke J A, Ireland C M, et al. Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity[J]. Journal of the American Chemical Society, 1986, 108(11): 3123-3124. |
2 | Zarezin D P, Shmatova O I, Kabylda A M, et al. Efficient synthesis of the peptide fragment of the natural depsipeptides jaspamide and chondramide[J]. European Journal of Organic Chemistry, 2018, 2018(34): 4716-4722. |
3 | Zhdanko A, Schmauder A, Ma C I, et al. Synthesis of chondramide A analogues with modified β-tyrosine and their biological evaluation[J]. Chemistry-A European Journal, 2011, 17(47): 13349-13357. |
4 | Andavan G S, Lemmens-Gruber R. Cyclodepsipeptides from marine sponges: natural agents for drug research[J]. Marine Drugs, 2010, 8(3): 810-834. |
5 | Alvariño R, Alonso E, Tabudravu J N, et al. Tavarua deoxyriboside A and jasplakinolide as potential neuroprotective agents: effects on cellular models of oxidative stress and neuroinflammation[J]. ACS Chemical Neuroscience, 2021, 12(1): 150-162. |
6 | Czajgucki Z, Andruszkiewicz R, Kamysz W. Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues[J]. Journal of Peptide Science, 2006, 12(10): 653-662. |
7 | Gala F, D'Auria M V, De Marino S, et al. New jaspamide derivatives with antimicrofilament activity from the sponge Jaspis splendans[J]. Tetrahedron, 2007, 63(24): 5212-5219. |
8 | Liu M, Sibi M P. Recent advances in the stereoselective synthesis of β-amino acids[J]. Tetrahedron, 2002, 58(40): 7991-8035. |
9 | Plucińska K, Liberek B. Synthesis of diazoketones derived from α-amino acids; problem of side reactions[J]. Tetrahedron, 1987, 43(15): 3509-3517. |
10 | Soloshonok V A, Fokina N A, Rybakova A V, et al. Biocatalytic approach to enantiomerically pure β-amino acids[J]. Tetrahedron: Asymmetry, 1995, 6(7): 1601-1610. |
11 | Broadley K, Davies S G. Stereoselective preparation of β-amino-acyl iron complexes for β-lactam synthesis[J]. Tetrahedron Letters, 1984, 25(16): 1743-1744. |
12 | Furukawa M, Okawara T, Terawaki Y. Asymmetric syntheses of β-amino acids by the addition of chiral amines to C̿ C double bonds[J]. Chemical and Pharmaceutical Bulletin, 1977, 25(6): 1319-1325. |
13 | Sibi M P, Prabagaran N, Ghorpade S G, et al. Enantioselective synthesis of α,β-disubstituted-β-amino acids[J]. Journal of the American Chemical Society, 2003, 125(39): 11796-11797. |
14 | Furukawa M, Okawara T, Noguchi Y, et al. Asymmetric syntheses of β-amino acids by the reduction of enamines[J]. Chemical and Pharmaceutical Bulletin, 1979, 27(9): 2223-2226. |
15 | Lubell W D, Kitamura M, Noyori R. Enantioselective synthesis of β-amino acids based on BINAP-ruthenium(Ⅱ) catalyzed hydrogenation[J]. Tetrahedron: Asymmetry, 1991, 2(7): 543-554. |
16 | Lurain A E, Walsh P J. A catalytic asymmetric method for the synthesis of γ-unsaturated β-amino acid derivatives[J]. Journal of the American Chemical Society, 2003, 125(35): 10677-10683. |
17 | Davies S G, Garrido N M, Kruchinin D, et al. Homochiral lithium amides for the asymmetric synthesis of β-amino acids[J]. Tetrahedron: Asymmetry, 2006, 17(12): 1793-1811. |
18 | Yamagiwa N, Qin H B, Matsunaga S, et al. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction[J]. Journal of the American Chemical Society, 2005, 127(38): 13419-13427. |
19 | Sperl J M, Sieber V. Multienzyme cascade reactions-status and recent advances[J]. ACS Catalysis, 2018, 8(3): 2385-2396. |
20 | Hepworth L J, France S P, Hussain S, et al. Enzyme cascades in whole cells for the synthesis of chiral cyclic amines[J]. ACS Catalysis, 2017, 7(4): 2920-2925. |
21 | Schrittwieser J H, Velikogne S, Hall M, et al. Artificial biocatalytic linear cascades for preparation of organic molecules[J]. Chemical Reviews, 2018, 118(1): 270-348. |
22 | Luo Z W, Lee S Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli[J]. Nature Communications, 2017, 8: 15689. |
23 | Sim M, Han M. Hydrolysis of dimethyl terephthalate for the production of terephthalic acid[J]. Journal of Chemical Engineering of Japan, 2006, 39(3): 327-333. |
24 | Song W, Wang J H, Wu J, et al. Asymmetric assembly of high-value α-functionalized organic acids using a biocatalytic chiral-group-resetting process[J]. Nature Communications, 2018, 9: 3818. |
25 | France S P, Hussain S, Hill A M, et al. One-pot cascade synthesis of mono- and disubstituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω-transaminase (ω-TA), and imine reductase (IRED) biocatalysts[J]. ACS Catalysis, 2016, 6(6): 3753-3759. |
26 | Klumbys E, Zebec Z, Weise N J, et al. Bio-derived production of cinnamyl alcohol via a three step biocatalytic cascade and metabolic engineering[J]. Green Chemistry, 2019, 20(3): 658-663. |
27 | Yu H L, Li T, Chen F F, et al. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade[J]. Metabolic Engineering, 2018, 47: 184-189. |
28 | Schmidt N G, Eger E, Kroutil W. Building bridges: biocatalytic C—C-bond formation toward multifunctional products[J]. ACS Catalysis, 2016, 6(7): 4286-4311. |
29 | Wu S K, Zhou Y, Seet D, et al. Regio-and stereoselective oxidation of styrene derivatives to arylalkanoic acids via one-pot cascade biotransformations[J]. Advanced Synthesis & Catalysis, 2017, 359(12): 2132-2141. |
30 | Zhou Y, Wu S K, Li Z. One-pot enantioselective synthesis of D-phenylglycines from racemic mandelic acids, styrenes, or biobased L-phenylalanine via cascade biocatalysis[J]. Advanced Synthesis & Catalysis, 2017, 359(24): 4305-4316. |
31 | Li G S, Lian J Z, Xue H L, et al. Biocascade synthesis of L-tyrosine derivatives by coupling a thermophilic tyrosine phenol-lyase and L-lactate oxidase[J]. European Journal of Organic Chemistry, 2020, 2020(8): 1050-1054. |
32 | Busto E, Simon R C, Richter N, et al. One-pot, two-module three-step cascade to transform phenol derivatives to enantiomerically pure (R)- or (S)-p-hydroxyphenyl lactic acids[J]. ACS Catalysis, 2016, 6(4): 2393-2397. |
33 | Tork S D, Nagy E Z A, Cserepes L, et al. The production of L- and D-phenylalanines using engineered phenylalanine ammonia lyases from Petroselinum crispum[J]. Scientific Reports, 2019, 9: 20123. |
34 | Dennig A, Busto E, Kroutil W, et al. Biocatalytic one-pot synthesis of L-tyrosine derivatives from monosubstituted benzenes, pyruvate, and ammonia[J]. ACS Catalysis, 2015, 5(12): 7503-7506. |
35 | Parmeggiani F, Lovelock S L, Weise N J, et al. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process[J]. Angewandte Chemie International Edition, 2015, 54(15): 4608-4611. |
36 | Seisser B, Zinkl R, Gruber K, et al. Cutting long syntheses short: access to non-natural tyrosine derivatives employing an engineered tyrosine phenol lyase[J]. Advanced Synthesis & Catalysis, 2010, 352(4): 731-736. |
37 | Koulikova V V, Zakomirdina L N, Gogoleva O I, et al. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase[J]. Amino Acids, 2011, 41(5): 1247-1256. |
38 | Suzuki S, Hirahara T, Shim J K, et al. Purification and properties of thermostable β-tyrosinase from an obligately symbiotic thermophile, Symbiobacterium thermophilum[J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(1): 84-89. |
39 | Faleev N G, Spirina S N, Ivoilov V S, et al. The catalytic mechanism of tyrosine phenol-lyase from Erwinia herbicola: the effect of substrate structure on pH-dependence of kinetic parameters in the reactions with ring-substituted tyrosines[J]. Zeitschrift Für Naturforschung C, 1996, 51(5/6): 363-370. |
40 | Carman G M, Levin R E. Partial purification and some properties of tyrosine phenol-lyase from Aeromonas phenologenes ATCC 29063[J]. Applied and Environmental Microbiology, 1977, 33(1): 192-198. |
41 | Yamada H, Kumagai H, Kashima N, et al. Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase[J]. Biochemical and Biophysical Research Communications, 1972, 46(2): 370-374. |
42 | Wierckx N J, Ballerstedt H, de Bont J A, et al. Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production[J]. J. Bacteriol., 2008, 190(8): 2822-2830. |
43 | Christenson S D, Liu W, Toney M D, et al. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis[J]. Journal of the American Chemical Society, 2003, 125(20): 6062-6063. |
44 | Rachid S, Krug D, Weissman K J, et al. Biosynthesis of (R)-β-tyrosine and its incorporation into the highly cytotoxic chondramides produced by Chondromyces crocatus[J]. Journal of Biological Chemistry, 2007, 282(30): 21810-21817. |
45 | Krug D, Müller R. Discovery of additional members of the tyrosine aminomutase enzyme family and the mutational analysis of CmdF[J]. ChemBioChem, 2009, 10(4): 741-750. |
46 | Walter T, King Z, Walker K D. A tyrosine aminomutase from rice (Oryza sativa) isomerizes (S)-α- to (R)-β-tyrosine with unique high enantioselectivity and retention of configuration[J]. Biochemistry, 2016, 55(1): 1-4. |
47 | Wu B, Szymański W, Wijma H J, et al. Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase[J]. Chemical Communications, 2010, 46(43): 8157. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[7] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[8] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[9] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[10] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[11] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[12] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[13] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[14] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[15] | Jiachen SUN, Wentao SUN, Hui SUN, Bo LYU, Chun LI. Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone [J]. CIESC Journal, 2022, 73(7): 3202-3211. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||