CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 722-729.DOI: 10.11949/0438-1157.20210926
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yunlong ZHOU(),Dongyao LIN(),Xiaoyuan YE,Bo SUN
Received:
2021-07-05
Revised:
2021-11-15
Online:
2022-02-18
Published:
2022-02-05
Contact:
Dongyao LIN
通讯作者:
林东尧
作者简介:
周云龙(1960—),男,博士,教授,基金资助:
CLC Number:
Yunlong ZHOU, Dongyao LIN, Xiaoyuan YE, Bo SUN. Effect of ions on photocatalytic H2 production using corn straw as sacrificial agent[J]. CIESC Journal, 2022, 73(2): 722-729.
周云龙, 林东尧, 叶校源, 孙博. 常见离子对玉米秸秆为牺牲剂的光催化制氢影响[J]. 化工学报, 2022, 73(2): 722-729.
Add to citation manager EndNote|Ris|BibTeX
样品 | 含量/% | |||
---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 其他成分 | |
秸叶 | 28.49 | 32.14 | 3.30 | 36.07 |
秸穂 | 28.34 | 30.65 | 2.96 | 38.05 |
秸皮 | 31.68 | 21.37 | 5.73 | 41.22 |
秸髓 | 26.96 | 28.68 | 2.02 | 42.34 |
玉米秸秆(总) | 28.00 | 21.50 | 4.46 | 46.04 |
Table 1 Component content of different parts of corn straw
样品 | 含量/% | |||
---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 其他成分 | |
秸叶 | 28.49 | 32.14 | 3.30 | 36.07 |
秸穂 | 28.34 | 30.65 | 2.96 | 38.05 |
秸皮 | 31.68 | 21.37 | 5.73 | 41.22 |
秸髓 | 26.96 | 28.68 | 2.02 | 42.34 |
玉米秸秆(总) | 28.00 | 21.50 | 4.46 | 46.04 |
pH | 电位/mV | ||
---|---|---|---|
Pt/TiO2 | 玉米秸秆 | 混合体系 | |
2 | 21.10 | 15.21 | 16.09 |
4 | 15.89 | -5.01 | 6.66 |
6 | 8.93 | -11.84 | 3.33 |
8 | -10.21 | -13.27 | -12.02 |
10 | -31.06 | -14.50 | -18.15 |
12 | -39.96 | -16.44 | -29.62 |
Table 2 Effect of pH on surface electrostatic charge of reaction system
pH | 电位/mV | ||
---|---|---|---|
Pt/TiO2 | 玉米秸秆 | 混合体系 | |
2 | 21.10 | 15.21 | 16.09 |
4 | 15.89 | -5.01 | 6.66 |
6 | 8.93 | -11.84 | 3.33 |
8 | -10.21 | -13.27 | -12.02 |
10 | -31.06 | -14.50 | -18.15 |
12 | -39.96 | -16.44 | -29.62 |
1 | Liu X Q, Duan X G, Wei W, et al. Photocatalytic conversion of lignocellulosic biomass to valuable products[J]. Green Chemistry, 2019, 21(16): 4266-4289. |
2 | Yang J C, Kim Y C, Shul Y G, et al. Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts[J]. Applied Surface Science, 1997, 121/122: 525-529. |
3 | Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. |
4 | Zong X, Han J F, Ma G J, et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation[J]. The Journal of Physical Chemistry C, 2011, 115(24): 12202-12208. |
5 | Zhang L J, Hao X Q, Li Y B, et al. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 499: 143862. |
6 | Puga A V. Photocatalytic production of hydrogen from biomass-derived feedstocks[J]. Coordination Chemistry Reviews, 2016, 315: 1-66. |
7 | Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process[J]. Nature, 1980, 286(5772): 474-476. |
8 | Kadam S R, Mate V R, Panmand R P, et al. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light[J]. RSC Advances, 2014, 4(105): 60626-60635. |
9 | Speltini A, Sturini M, Dondi D, et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study[J]. Photochemical & Photobiological Sciences, 2014, 13(10): 1410-1419. |
10 | Zhang G, Ni C S, Huang X B, et al. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis[J]. Chemical Communications (Cambridge, England), 2016, 52(8): 1673-1676. |
11 | Kondarides D I, Daskalaki V M, Patsoura A, et al. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions[J]. Catalysis Letters, 2008, 122(1/2): 26-32. |
12 | Fu X L, Long J L, Wang X X, et al. Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6484-6491. |
13 | St John M R, Furgala A J, Sammells A F. Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder[J]. The Journal of Physical Chemistry, 1983, 87(5): 801-805. |
14 | Davda R R, Shabaker J W, Huber G W, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 171-186. |
15 | Chen S S, Takata T, Domen K. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2: 17050. |
16 | 李允琛. 浅析我国水资源现状与问题[J]. 农村科学实验, 2020(1): 70-71. |
Li Y C. Analysis on the current situation and problems of water resources in China[J]. Rural Scientific Experiment, 2020(1): 70-71. | |
17 | 敬登伟, 汤文东, 邢婵娟, 等. 硫化镉复合光催化剂在模拟有机污染物体系中光催化制氢研究[J]. 燃料化学学报, 2011, 39(2): 135-139. |
Jing D W, Tang W D, Xing C J, et al. Study on photocatalytic hydrogen production in simulated organic pollutants over cadmium sulfide composite photocatalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 135-139. | |
18 | Yu Y M, Zhu L J, Liu G K, et al. Pd quantum dots loading Ti3+, N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effects[J]. Applied Surface Science, 2021, 540: 148239. |
19 | 李芳芹, 孙辰豪, 任建兴, 等. 以污染物作为电子给体的新型光催化制氢体系的研究进展[J]. 化工进展, 2021, 40(9): 4791-4805. |
Li F Q, Sun C H, Ren J X, et al. Research progress of novel photocatalytic hydrogen production system with pollutants as electron donors[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4791-4805. | |
20 | 周云龙, 叶校源, 林东尧. 在紫外光下以玉米秸秆为牺牲剂提升光催化分解水制氢[J]. 化工学报, 2019, 70(7): 2717-2726. |
Zhou Y L, Ye X Y, Lin D Y. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation[J]. CIESC Journal, 2019, 70(7): 2717-2726. | |
21 | Asha K, Badamali S K. Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light[J]. Molecular Catalysis, 2020, 497: 111236. |
22 | Wakerley D W, Kuehnel M F, Orchard K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nature Energy, 2017, 2: 17021. |
23 | Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au/TiO2 and Pt/TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89(2): 177-189. |
24 | Bamwenda G R, Tsubota S, Kobayashi T, et al. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 77(1): 59-67. |
25 | Maeda K. Photocatalytic properties of rutile TiO2 powder for overall water splitting[J]. Catalysis Science and Technology, 2014, 4(7): 1949-1953. |
26 | Zheng X J, Wei L F, Zhang Z H, et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation[J]. International Journal of Hydrogen Energy, 2009, 34(22): 9033-9041. |
27 | Reynal A, Pastor E, Gross M A, et al. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production[J]. Chemical Science, 2015, 6(8): 4855-4859. |
28 | Ryu S Y, Balcerski W, Lee T K, et al. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas[J]. The Journal of Physical Chemistry C, 2007, 111(49): 18195-18203. |
29 | Arakawa H, Sayama K. Solar hydrogen production. Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J]. Catalysis Surveys from Japan, 2000, 4(1): 75-80. |
30 | 王博文. 铜离子光还原及光催化Click反应的研究[D]. 北京: 北京化工大学, 2017. |
Wang B W. Photoreduction of Cu(Ⅱ) and photocatalytic click chemistry research[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
31 | 陈士夫, 曹更玉. H2O2、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J]. 感光科学与光化学, 2002, 20(6): 435-440. |
Chen S F, Cao G Y. Effects of H2O2 metal ions etc. on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos[J]. Photographic Science and Photochemistry, 2002, 20(6): 435-440. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[3] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[6] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[7] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[10] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[11] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[12] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[13] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[14] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[15] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||