CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 712-721.DOI: 10.11949/0438-1157.20210987
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Chang SU1,2(),Xiaobo FENG1,2(),Liyun ZHANG1,2,Feng CHEN1,2,Xiaoyan ZHAO1,2,Jingpei CAO1,2()
Received:
2021-07-14
Revised:
2021-10-20
Online:
2022-02-18
Published:
2022-02-05
Contact:
Xiaobo FENG,Jingpei CAO
苏畅1,2(),冯晓博1,2(),张立云1,2,陈峰1,2,赵小燕1,2,曹景沛1,2()
通讯作者:
冯晓博,曹景沛
作者简介:
苏畅(1995—),男,硕士研究生,基金资助:
CLC Number:
Chang SU, Xiaobo FENG, Liyun ZHANG, Feng CHEN, Xiaoyan ZHAO, Jingpei CAO. Effect of tetraethylammonium hydroxide treatment on the structure of HMOR zeolite and its catalytic performance in the carbonylation of dimethyl ether[J]. CIESC Journal, 2022, 73(2): 712-721.
苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721.
Add to citation manager EndNote|Ris|BibTeX
HMOR zeolites | SBET①/(m2/g) | Smicro②/(m2/g) | Sext/(m2/g) | Vtotal③/(cm3/g) | Vmicro②/(cm3/g) | Vmeso④/(cm3/g) |
---|---|---|---|---|---|---|
HMOR | 506 | 449 | 57 | 0.308 | 0.181 | 0.127 |
HMOR-0.2TEA | 516 | 456 | 60 | 0.357 | 0.183 | 0.174 |
HMOR-0.3TEA | 548 | 484 | 64 | 0.351 | 0.191 | 0.160 |
HMOR-0.4TEA | 533 | 474 | 59 | 0.331 | 0.190 | 0.141 |
HMOR-0.5TEA | 524 | 467 | 56 | 0.335 | 0.188 | 0.147 |
Table 1 Specific surface areas and pore properties of HMOR zeolites treated by TEAOH solutions with different concentration
HMOR zeolites | SBET①/(m2/g) | Smicro②/(m2/g) | Sext/(m2/g) | Vtotal③/(cm3/g) | Vmicro②/(cm3/g) | Vmeso④/(cm3/g) |
---|---|---|---|---|---|---|
HMOR | 506 | 449 | 57 | 0.308 | 0.181 | 0.127 |
HMOR-0.2TEA | 516 | 456 | 60 | 0.357 | 0.183 | 0.174 |
HMOR-0.3TEA | 548 | 484 | 64 | 0.351 | 0.191 | 0.160 |
HMOR-0.4TEA | 533 | 474 | 59 | 0.331 | 0.190 | 0.141 |
HMOR-0.5TEA | 524 | 467 | 56 | 0.335 | 0.188 | 0.147 |
样品 | (B8-MR/B12-MR)/%① |
---|---|
HMOR | 13.6 |
HMOR-0.2TEA | 15.5 |
HMOR-0.3TEA | 16.7 |
HMOR-0.4TEA | 14.8 |
HMOR-0.5TEA | 13.5 |
Table 2 B8-MR/B12-MR of HMOR zeolites treated by TEAOH solutions with different concentration
样品 | (B8-MR/B12-MR)/%① |
---|---|
HMOR | 13.6 |
HMOR-0.2TEA | 15.5 |
HMOR-0.3TEA | 16.7 |
HMOR-0.4TEA | 14.8 |
HMOR-0.5TEA | 13.5 |
Fig.6 DME conversion over HMOR zeolite treated by TEAOH solutions with different concentration(reaction conditions: 220℃, 1.5 MPa, DME∶CO∶Ar=4.32∶5.06∶90.62 (vol.), 1600 h-1)
1 | Li Y, Sun Q, Huang S Y, et al. Dimethyl ether carbonylation over pyridine-modified MOR: enhanced stability influenced by acidity[J]. Catalysis Today, 2018, 311: 81-88. |
2 | 李振宇, 李顶杰, 黄格省, 等. 燃料乙醇发展现状及思考[J]. 化工进展, 2013, 32(7): 1457-1467. |
Li Z Y, Li D J, Huang G S, et al. Insights on current development of fuel ethanol[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1457-1467. | |
3 | 黄守莹, 熊雄, 贺培, 等. 二甲醚羰基化丝光沸石成型催化剂黏结剂的研究[J]. 化工学报, 2020, 71(10): 4642-4651. |
Huang S Y, Xiong X, He P, et al. Study on binder of extruded mordenite catalyst for dimethyl ether carbonylation[J]. CIESC Journal, 2020, 71(10): 4642-4651. | |
4 | Farrell A E, Plevin R J, Turner B T, et al. Ethanol can contribute to energy and environmental goals[J]. Science, 2006, 311(5760): 506-508. |
5 | 冯晓博, 刘天龙, 赵小燕, 等. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967. |
Feng X B, Liu T L, Zhao X Y, et al. Advance in ethanol synthesis from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. CIESC Journal, 2021, 72(8): 3958-3967. | |
6 | Cleveland C J, Hall C A, Herendeen R A. Energy returns on ethanol production[J]. Science, 2006, 312(5781): 1746-1748. |
7 | 王鹏, 王宪贵, 郭战英, 等. 合成气合成乙醇的研究进展[J]. 洁净煤技术, 2010(1): 55-58. |
Wang P, Wang X G, Guo Z Y, et al. Research progress in producer gas to ethanol technology [J]. Clean Coal Technology, 2010(1): 55-58. | |
8 | Choi Y, Liu P. Mechanism of ethanol synthesis from syngas on Rh(111)[J]. Journal of the American Chemical Society, 2009, 131(36): 13054-13061. |
9 | Portillo C M A, Villanueva P A L, Vidal-Barrero F, et al. Effects of methanol co-feeding in ethanol synthesis from syngas using alkali-doped MoS2 catalysts[J]. Fuel Processing Technology, 2015, 134: 270-274. |
10 | Mei D H, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study[J]. Journal of Catalysis, 2010, 271(2): 325-342. |
11 | Lopez L, Montes V, Kušar H, et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters[J]. Applied Catalysis A: General, 2016, 526: 77-83. |
12 | 赵娜, 牛君阳, 刘亚华, 等. 预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响[J]. 化工学报, 2015, 66(9): 3504-3510. |
Zhao N, Niu J Y, Liu Y H, et al. Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation[J]. CIESC Journal, 2015, 66(9): 3504-3510. | |
13 | 黄守莹, 王悦, 吕静, 等. 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展[J]. 化工学报, 2016, 67(1): 240-247. |
Huang S Y, Wang Y, Lü J, et al. Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate[J]. CIESC Journal, 2016, 67(1): 240-247. | |
14 | Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie, 2006, 118(10): 1647-1650. |
15 | Boronat M, Martínez-Sánchez C, Law D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
16 | Wang X S, Li R J, Yu C C, et al. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 960-969. |
17 | Sheng H B, Qian W X, Zhang H T, et al. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020, 295: 109950. |
18 | Yuan Y Y, Wang L Y, Liu H C, et al. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. |
19 | Wang X S, Li R J, Yu C C, et al. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239: 794-803. |
20 | 韩海波, 王有和, 李康, 等. 超声波碱处理改性对丝光沸石结构、酸性质及其催化性能的影响[J]. 化工学报, 2018, 69(7): 3001-3008. |
Han H B, Wang Y H, Li K, et al. Effect of ultrasonic alkali treatment on structural, acidic properties and performance of MOR catalyst[J]. CIESC Journal, 2018, 69(7): 3001-3008. | |
21 | 李莎, 李玉平, 狄春雨, 等. TPAOH/NaOH混合碱体系对ZSM-5沸石的改性及其催化性能研究[J]. 燃料化学学报, 2012, 40(5): 583-588. |
Li S, Li Y P, Di C Y, et al. Modification and catalyst performance of ZSM-5 zeolite by treatment with TPAOH/NaOH mixed alkali[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 583-588. | |
22 | 张云鹏, 李明罡, 王萍, 等. 四乙基氢氧化铵后晶化处理对ZSM-5分子筛结构及其甲醇制丙烯催化性能的影响[J]. 石油学报(石油加工), 2018, 34(4): 817-824. |
Zhang Y P, Li M G, Wang P, et al. Enhancing the catalytic performance of ZSM-5 zeolite in methanol to propene reaction via recrystallization in the presence of tetraethylammonium hydroxide[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(4): 817-824. | |
23 | Abelló S, Bonilla A, Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364(1/2): 191-198. |
24 | Ravishankar R, Kirschhock C, Schoeman B J, et al. Physicochemical characterization of silicalite-1 nanophase material[J]. The Journal of Physical Chemistry B, 1998, 102(15): 2633-2639. |
25 | Bagnasco G. Improving the selectivity of NH3TPD measurements[J]. Journal of Catalysis, 1996, 159(1): 249-252. |
26 | Bai L Y, Xiong Z P, Zhan E S, et al. Piperazine as a versatile organic structure-directing agent for zeolite synthesis: effect of SiO2/Al2O3 ratio on phase selectivity[J]. Journal of Materials Science, 2019, 54(10): 7589-7602. |
27 | Xue H F, Huang X M, Zhan E S, et al. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catalysis Communications, 2013, 37: 75-79. |
28 | Li Y, Huang S Y, Cheng Z Z, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256: 117777. |
29 | Zhao N, Tian Y, Zhang L F, et al. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chinese Journal of Catalysis, 2019, 40(6): 895-904. |
30 | 王伟, 钱伟鑫, 马宏方, 等. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795. |
Wang W, Qian W X, Ma H F, et al. A theoretical study on adsorption-diffusion of dimethyl ether carbonylation on pyridine-modified H-MOR[J]. CIESC Journal, 2021, 72(9): 4786-4795. | |
31 | Xue H F, Huang X M, Ditzel E, et al. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[3] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[4] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[5] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[6] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[7] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[8] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[9] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[10] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[11] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[12] | Xinshan KONG, Renxing HUANG, Lixia KANG, Yongzhong LIU. Optimal design of time-sharing heat storage system for modular production of methanol [J]. CIESC Journal, 2022, 73(2): 770-781. |
[13] | Xiongfei XU, Penglong LIU, Wei ZHANG, Xin XU, Kan ZHANG, Junwen WANG. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction [J]. CIESC Journal, 2022, 73(2): 838-846. |
[14] | Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies [J]. CIESC Journal, 2022, 73(10): 4565-4575. |
[15] | Shuangming WEI, Minggao YU, Bei PEI, Shiliang LI, Yaxiang KANG, Mengjiao XU, Jiaqi GUO. Experimental study on explosion characteristics of ternary mixed gas fuel [J]. CIESC Journal, 2022, 73(1): 451-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||