CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1072-1082.DOI: 10.11949/0438-1157.20211399
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Senlin WANG(),Zhaozhi LI,Yingjuan SHAO(),Wenqi ZHONG
Received:
2021-09-29
Revised:
2022-01-12
Online:
2022-03-14
Published:
2022-03-15
Contact:
Yingjuan SHAO
通讯作者:
邵应娟
作者简介:
汪森林(1997—),男,硕士研究生,基金资助:
CLC Number:
Senlin WANG, Zhaozhi LI, Yingjuan SHAO, Wenqi ZHONG. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube[J]. CIESC Journal, 2022, 73(3): 1072-1082.
汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
Add to citation manager EndNote|Ris|BibTeX
1 | Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants[J]. Thermal Engineering, 2017, 64(2): 83-96. |
2 | 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. |
Xu J L, Liu C, Sun E H, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. | |
3 | 李平姣. 超临界二氧化碳循环燃煤流化床锅炉的构型研究[D]. 南京: 东南大学, 2019. |
Li P J. Configuration design study of supercritical carbon dioxide coal-fired circulating fluidized bed boiler[D]. Nanjing: Southeast University, 2019. | |
4 | Liu X J, Zhong W Q, Li P J, et al. Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle[J]. Energy, 2019, 176: 468-478. |
5 | Bae Y Y, Kim H, Kang D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. |
6 | Kim H Y, Kim H, Song J H, et al. Heat transfer test in a vertical tube using CO2 at supercritical pressures[J]. Journal of Nuclear Science and Technology, 2007, 44(3): 285-293. |
7 | 吴新明. 超临界二氧化碳在竖直圆管内流动传热特性实验研究[D]. 北京: 华北电力大学(北京), 2019. |
Wu X M. Experimental study on the flow and heat transfer characteristics of supercritical carbon dioxide in vertical tubes[D]. Beijing: North China Electric Power University, 2019. | |
8 | Song J H, Kim H Y, Kim H, et al. Heat transfer characteristics of a supercritical fluid flow in a vertical pipe[J]. The Journal of Supercritical Fluids, 2008, 44(2): 164-171. |
9 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
10 | Lei X L, Zhang J, Guo L T, et al. Experimental study on convection heat transfer of supercritical CO2 in small upward channels[J]. Energy, 2019, 176: 119-130. |
11 | Li Z H, Jiang P X, Zhao C R, et al. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1162-1171. |
12 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
13 | Eter A, Groeneveld D, Tavoularis S. Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles[J]. Nuclear Engineering and Design, 2017, 313: 162-176. |
14 | Zhang Q, Li H X, Liu J L, et al. Numerical investigation of different heat transfer behaviors of supercritical CO2 in a large vertical tube[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118944. |
15 | 张良, 朱兵国, 吴新明, 等. 超临界二氧化碳在垂直光管内的传热特性[J]. 中国电机工程学报, 2019, 39(15): 4487-4497. |
Zhang L, Zhu B G, Wu X M, et al. Heat transfer characteristics of supercritical pressure CO2 in a vertical smooth tube[J]. Proceedings of the CSEE, 2019, 39(15): 4487-4497. | |
16 | 庄晓如, 徐心海, 杨智, 等. 高温吸热管内超临界CO2传热特性的数值模拟[J]. 物理学报, 2021, 70(3): 176-188. |
Zhuang X R, Xu X H, Yang Z, et al. Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region[J]. Acta Physica Sinica, 2021, 70(3): 176-188. | |
17 | Du X, Lv Z H, Yu X, et al. Heat transfer of supercritical CO2 in vertical round tube: a considerate turbulent Prandtl number modification[J]. Energy, 2020, 192: 116612. |
18 | Shiralkar B S, Griffith P. Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes[R]. Office of Scientific and Technical Information (OSTI), 1968. |
19 | Kim J K, Jeon H K, Lee J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15/16/17): 1795-1802. |
20 | Grabezhnaya V A, Kirillov P L. Heat transfer under supercritical pressures and heat transfer deterioration boundaries[J]. Thermal Engineering, 2006, 53: 296-301. |
21 | Cheng X, Yang Y H, Huang S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128. |
22 | Kline N, Feuerstein F, Tavoularis S. Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1056-1068. |
23 | Saltanov E, Pioro I, Mann D, et al. Study on specifics of forced-convective heat transfer in supercritical carbon dioxide[J]. Journal of Nuclear Engineering and Radiation Science, 2015, 1(1): 011008. |
24 | 张宇, 姜培学, 石润富, 等. 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y, Jiang P X, Shi R F, et al. Convection heat transfer of CO2 at supercritical pressure in a vertical tube at low Reynolds numbers[J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
25 | 朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学(北京), 2020. |
Zhu B G. Research on convective heat transfer of super-critical carbon dioxide in vertical tube[D]. Beijing: North China Electric Power University, 2020. | |
26 | Xu J L, Zhang H S, Zhu B G, et al. Critical supercritical-boiling-number to determine the onset of heat transfer deterioration for supercritical fluids[J]. Solar Energy, 2020, 195: 27-36. |
27 | 王振川. 超临界压力流体湍流换热实验与数值模拟研究[D]. 北京: 清华大学, 2018. |
Wang Z C. Experimental and numerical research on turbulent convection heat transfer of supercritical pressure fluid[D]. Beijing: Tsinghua University, 2018. | |
28 | 朱兵国, 张海松, 孙恩慧, 等. 超高参数CO2在垂直管中的传热分析[J]. 化工进展, 2019, 38(11): 4880-4889. |
Zhu B G, Zhang H S, Sun E H, et al. Heat transfer analysis of ultra high parameter CO2 in vertical pipe[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4880-4889. | |
29 | Jackson J D, Hall W B. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Institution of Mechanical Engineers, Conference Publications, 1979, 2: 613-640. |
30 | McEligot D M, Coon C W, Perkins H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. |
31 | Pioro I L, Duffey R B. Experimental heat transfer in supercritical water flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(22): 2407-2430. |
32 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
33 | Jiang P X, Xu Y J, Lv J, et al. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media[J]. Applied Thermal Engineering, 2004, 24(8/9): 1255-1270. |
34 | 石润富, 姜培学, 张宇. 细圆管内超临界二氧化碳对流换热的实验研究[J]. 工程热物理学报, 2007, 28(6): 995-997. |
Shi R F, Jiang P X, Zhang Y. Experimental investigations of convection heat transfer of CO2 at supercritical pressures in small tubes[J]. Journal of Engineering Thermophysics, 2007, 28(6): 995-997. | |
35 | Jiang P X, Zhang Y, Zhao C R, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. |
36 | Kim J K, Jeon H K, Lee J S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4908-4911. |
37 | Kim H, Kim H Y, Song J H, et al. Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage[J]. Progress in Nuclear Energy, 2008, 50(2/3/4/5/6): 518-525. |
38 | Jiang P X, Zhang Y, Shi R F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
39 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
40 | Zahlan H, Groeneveld D, Tavoularis S. Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures[J]. Nuclear Engineering and Design, 2015, 289: 92-107. |
41 | Xu R N, Luo F, Jiang P X. Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements[J]. International Journal of Heat and Mass Transfer, 2017, 110: 576-586. |
42 | 熊超. 超临界压力二氧化碳在竖直细圆管中的强化换热实验研究[D]. 北京: 清华大学, 2017. |
Xiong C. Experimental investigation of enhanced heat transfer of CO2 at super-critical pressure in small vertical tubes[D]. Beijing: Tsinghua University, 2017. | |
43 | Zhang S J, Xu X X, Liu C, et al. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube[J]. Applied Thermal Engineering, 2019, 157: 113687. |
44 | Zhu B G, Xu J L, Wu X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[15] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||