CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2757-2773.DOI: 10.11949/0438-1157.20220353
• Reviews and monographs • Previous Articles Next Articles
Duanhui GAO1(),Weiqiang XIAO2(),Feng GAO1,Qian XIA2,Manqiu WANG1,Xinbo LU2,Xiaoli ZHAN1,Qinghua ZHANG1()
Received:
2022-03-09
Revised:
2022-04-20
Online:
2022-08-01
Published:
2022-07-05
Contact:
Weiqiang XIAO,Qinghua ZHANG
高端辉1(),肖卫强2(),高峰1,夏倩2,汪曼秋1,卢昕博2,詹晓力1,张庆华1()
通讯作者:
肖卫强,张庆华
作者简介:
高端辉(1998—),男,博士研究生,CLC Number:
Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels[J]. CIESC Journal, 2022, 73(7): 2757-2773.
高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
Add to citation manager EndNote|Ris|BibTeX
单体 | 基本性质 | 热性能 | 力学性能 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
二胺 | 二酐 | 密度/ (g/cm3) | 比表面积/ (m2/g) | 孔隙率/% | 体积收缩率/% | |||
ODA+1,3-丙二胺 (摩尔比1∶2) | BPDA | 0.0553 | 317 | — | 23.8 | λ: 0.033 W/(m·K) | 压缩模量3.273 | [ |
ODA+BAPOPP | BPDA | 0.124~0.172 | 29~446 | — | 8.0~15.0 | λ: 0.033~0.049 W/(m·K);Td5%:约550.0℃ | 杨氏模量28.000~34.000 MPa | [ |
ODA+6FAPB (摩尔比1∶1) | BPDA | 0.175 | 402 | 88.9 | 18.6 | Td:590.0℃ | 杨氏模量16.200 MPa | [ |
ODA+TFMB (摩尔比1∶1) | BPDA | 0.116 | 388 | 92.4 | 8.3 | Td5%:570.8℃ | 杨氏模量18.350 MPa | [ |
DMBZ+BAP10 (摩尔比3∶1) | BPDA | 0.204 | 328 | 85.2 | 25.0 | Td:507.0℃ | 压缩模量46.500 MPa; 拉伸模量50.500 MPa | [ |
Table 1 Properties of modified PI aerogel prepared by adjusting molecular structure
单体 | 基本性质 | 热性能 | 力学性能 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
二胺 | 二酐 | 密度/ (g/cm3) | 比表面积/ (m2/g) | 孔隙率/% | 体积收缩率/% | |||
ODA+1,3-丙二胺 (摩尔比1∶2) | BPDA | 0.0553 | 317 | — | 23.8 | λ: 0.033 W/(m·K) | 压缩模量3.273 | [ |
ODA+BAPOPP | BPDA | 0.124~0.172 | 29~446 | — | 8.0~15.0 | λ: 0.033~0.049 W/(m·K);Td5%:约550.0℃ | 杨氏模量28.000~34.000 MPa | [ |
ODA+6FAPB (摩尔比1∶1) | BPDA | 0.175 | 402 | 88.9 | 18.6 | Td:590.0℃ | 杨氏模量16.200 MPa | [ |
ODA+TFMB (摩尔比1∶1) | BPDA | 0.116 | 388 | 92.4 | 8.3 | Td5%:570.8℃ | 杨氏模量18.350 MPa | [ |
DMBZ+BAP10 (摩尔比3∶1) | BPDA | 0.204 | 328 | 85.2 | 25.0 | Td:507.0℃ | 压缩模量46.500 MPa; 拉伸模量50.500 MPa | [ |
单体 | 交联剂 | 基本性质 | 热性能 | 力学性能 | 文献 | ||
---|---|---|---|---|---|---|---|
密度/(g/cm3) | 孔隙率/% | 体积收 缩率/% | |||||
ODA+BPDA | PAPSQ | 0.120 | 90.0 | 1.0 | λ: 0.0300 W/(m·K) Td: 560.0℃ | 杨氏模量43.18 MPa | [ |
(ODA+DMBZ)+BPDA | PMA | 0.120~0.170 | >88.0 | — | — | 杨氏模量2.00~60.00 MPa | [ |
DMBZ+BPDA | NH2-HBPSi(5%,质量分数) | 0.121 | 90.1 | 11.7 | λ: 0.0326 W/(m·K) | 杨氏模量25.30 MPa | [ |
ODA+BPDA | PVPMS | 0.360 | — | 17.3 | λ: 0.0400 W/(m·K) | 弹性模量12.33 MPa | [ |
ODA+BPDA | BTMSPA+硅溶胶(3 ml) | 0.120 | — | 17.1 | λ: 0.0330 W/(m·K) Td: 537.0℃ | 杨氏模量9.20 MPa | [ |
DMBZ+BPDA | mCNTs(1.0%,质量分数) | 0.181 | 87.1 | 40.0 | Td5%: 503.0℃ | 比模量715.50 J/g | [ |
ODA+PMDA | 石墨烯(5%,质量分数)+ 蒙脱土(10%,质量分数) | 0.090 | — | 21.1 | Td5%: 512.0℃ | 模量14.00 MPa | [ |
Table 2 Performance of some crosslinked PI aerogels
单体 | 交联剂 | 基本性质 | 热性能 | 力学性能 | 文献 | ||
---|---|---|---|---|---|---|---|
密度/(g/cm3) | 孔隙率/% | 体积收 缩率/% | |||||
ODA+BPDA | PAPSQ | 0.120 | 90.0 | 1.0 | λ: 0.0300 W/(m·K) Td: 560.0℃ | 杨氏模量43.18 MPa | [ |
(ODA+DMBZ)+BPDA | PMA | 0.120~0.170 | >88.0 | — | — | 杨氏模量2.00~60.00 MPa | [ |
DMBZ+BPDA | NH2-HBPSi(5%,质量分数) | 0.121 | 90.1 | 11.7 | λ: 0.0326 W/(m·K) | 杨氏模量25.30 MPa | [ |
ODA+BPDA | PVPMS | 0.360 | — | 17.3 | λ: 0.0400 W/(m·K) | 弹性模量12.33 MPa | [ |
ODA+BPDA | BTMSPA+硅溶胶(3 ml) | 0.120 | — | 17.1 | λ: 0.0330 W/(m·K) Td: 537.0℃ | 杨氏模量9.20 MPa | [ |
DMBZ+BPDA | mCNTs(1.0%,质量分数) | 0.181 | 87.1 | 40.0 | Td5%: 503.0℃ | 比模量715.50 J/g | [ |
ODA+PMDA | 石墨烯(5%,质量分数)+ 蒙脱土(10%,质量分数) | 0.090 | — | 21.1 | Td5%: 512.0℃ | 模量14.00 MPa | [ |
1 | Maleki H, Durães L, Portugal A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014, 197: 116-129. |
2 | Cheng Y, Zhang X, Qin Y, et al. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson's ratio[J]. Nature Communications, 2021, 12: 4092. |
3 | Maleki H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016, 300: 98-118. |
4 | Zhan C, Jana S C. Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption[J]. Microporous and Mesoporous Materials, 2020, 307: 110501. |
5 | Deng Y R, Pan Y L, Zhang Z X, et al. Novel thermotolerant and flexible polyimide aerogel separator achieving advanced lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(4): 2106176. |
6 | Shi Z Q, Gao H C, Feng J, et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration[J]. Angewandte Chemie, 2014, 126(21): 5484-5488. |
7 | Gu J, Hu C S, Zhang W W, et al. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration[J]. Applied Catalysis B: Environmental, 2018, 237: 482-490. |
8 | Zhao X F, Zhang J, Wang X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2019, 478: 266-274. |
9 | Zhuang Y B, Seong J G, Lee Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in Polymer Science, 2019, 92: 35-88. |
10 | Bogert M T. 4-Amino-o-phthalic aid and some of its derivatives[J]. Journal of the American Chemical Society, 1908, 30: 1135-1144. |
11 | Rhine W, Wang J, Begag R. Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same: US7074880[P]. 2006. |
12 | 郑帅, 刘雪强. 聚酰亚胺气凝胶的研究进展[J]. 产业用纺织品, 2019, 37(12): 1-6. |
Zheng S, Liu X Q. Research progress of polyimide aerogels[J]. Technical Textiles, 2019, 37(12): 1-6. | |
13 | Zhang L, Wu J T, Zhang X M, et al. Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents[J]. RSC Advances, 2015, 5(17): 12592-12596. |
14 | Liu M Y, Wang Y X, Ji J Q, et al. A facile method to fabricate the polyimide aerogels with controllable microstructure by freeze-drying[J]. Materials Letters, 2020, 267: 127558. |
15 | Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666. |
16 | Chidambareswarapattar C, Xu L, Sotiriou-Leventis C, et al. Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons[J]. RSC Advances, 2013, 3(48): 26459. |
17 | Yang G J, Ning T L, Zhao W, et al. Robust ambient pressure dried polyimide aerogels and their graphene oxide directed growth of 1D-2D nanohybrid aerogels using water as the only solvent[J]. RSC Advances, 2017, 7(26): 16210-16216. |
18 | Kim J, Kwon J, Kim S I, et al. One-step synthesis of nano-porous monolithic polyimide aerogel[J]. Microporous and Mesoporous Materials, 2016, 234: 35-42. |
19 | Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP)[J]. Chemistry of Materials, 2011, 23(8): 2250-2261. |
20 | Wu Q, Pan L, Wang H, et al. A green and scalable method for producing high-performance polyimide aerogels using low-boiling-point solvents and sublimation drying[J]. Polymer Journal, 2016, 48(2): 169-175. |
21 | Ning T L, Yang G J, Zhao W, et al. One-pot solvothermal synthesis of robust ambient-dried polyimide aerogels with morphology-enhanced superhydrophobicity for highly efficient continuous oil/water separation[J]. Reactive and Functional Polymers, 2017, 116: 17-23. |
22 | Mosanenzadeh S G, Alshrah M, Saadatnia Z, et al. Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900777. |
23 | Kim J, Kwon J, Kim M, et al. Low-dielectric-constant polyimide aerogel composite films with low water uptake[J]. Polymer Journal, 2016, 48(7): 829-834. |
24 | Xu L L, Xiao L H, Jia P, et al. Lightweight and ultrastrong polymer foams with unusually superior flame retardancy[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26392-26399. |
25 | Teo N, Gu Z P, Jana S C. Polyimide-based aerogel foams, via emulsion-templating[J]. Polymer, 2018, 157: 95-102. |
26 | Paraskevopoulou P, Chriti D, Raptopoulos G, et al. Synthetic polymer aerogels in particulate form[J]. Materials (Basel, Switzerland), 2019, 12(9): 1543. |
27 | Jin C X, Kulkarni A, Teo N, et al. Fabrication of pill-shaped polyimide aerogel particles using microfluidic flows[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 361-370. |
28 | Yang J M, Wang H Q, Zhou B, et al. Versatile direct writing of aerogel-based sol-gel inks[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(6): 2129-2139. |
29 | Teo N, Joo P, Amis E J, et al. Development of intricate aerogel articles using fused filament fabrication[J]. ACS Applied Polymer Materials, 2019, 1(7): 1749-1756. |
30 | Mosanenzadeh S G, Saadatnia Z, Shi F, et al. Structure to properties relations of BPDA and PMDA backbone hybrid diamine polyimide aerogels[J]. Polymer, 2019, 176: 213-226. |
31 | Li B Y, Jiang S J, Yu S W, et al. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines[J]. Journal of Sol-Gel Science and Technology, 2018, 88(2): 386-394. |
32 | Wu S, Du A, Huang S M, et al. Solution-processable polyimide aerogels with high hydrophobicity[J]. Materials Letters, 2016, 176: 118-121. |
33 | Wu S, Du A, Huang S M, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane[J]. RSC Advances, 2016, 6(27): 22868-22877. |
34 | Guo H Q, Meador M A B, McCorkle L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429. |
35 | Xi S, Wang X D, Zhang Z, et al. Influence of diamine rigidity and dianhydride rigidity on the microstructure, thermal and mechanical properties of cross-linked polyimide aerogels[J]. Journal of Porous Materials, 2021, 28(3): 717-725. |
36 | Qiao S Y, Kang S, Hu Z M, et al. Moisture-resistance, mechanical and thermal properties of polyimide aerogels[J]. Journal of Porous Materials, 2020, 27(1): 237-247. |
37 | Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J]. Applied Surface Science, 2018, 440: 595-605. |
38 | Vivod S L, Meador M A B, Pugh C, et al. Toward improved optical transparency of polyimide aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8622-8633. |
39 | Pantoja M, Boynton N, Cavicchi K A, et al. Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9425-9437. |
40 | Meador M A B, Agnello M, McCorkle L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29073-29079. |
41 | Shen D X, Liu J G, Yang H X, et al. Intrinsically highly hydrophobic semi-alicyclic fluorinated polyimide aerogel with ultralow dielectric constants[J]. Chemistry Letters, 2013, 42(10): 1230-1232. |
42 | Viggiano R P, Williams J C, Schiraldi D A, et al. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8287-8296. |
43 | Wang Y X, He T J, Liu M Y, et al. Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123809. |
44 | Lee D H, Jo M J, Han S W, et al. Polyimide aerogel with controlled porosity: solvent-induced synergistic pore development during solvent exchange process[J]. Polymer, 2020, 205: 122879. |
45 | Teo N, Jana S C. Solvent effects on tuning pore structures in polyimide aerogels[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(29): 8581-8590. |
46 | Xu G F, Li M J, Wu T T, et al. Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers[J]. Reactive and Functional Polymers, 2020, 154: 104672. |
47 | Zhang X, Zhao X Y, Xue T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385: 123963. |
48 | Yuan S W, Yu Z, Wu P, et al. Properties of gradient polyimide aerogels prepared through layer-by-layer assembly[J]. Polymer Engineering & Science, 2020, 60(9): 2292-2300. |
49 | Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 536-544. |
50 | Simón-Herrero C, Chen X Y, Ortiz M L, et al. Linear and crosslinked polyimide aerogels: synthesis and characterization[J]. Journal of Materials Research and Technology, 2019, 8(3): 2638-2648. |
51 | Jiang Y M, Zhang T Y, Wang K, et al. Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide[J]. Journal of Porous Materials, 2017, 24(5): 1353-1362. |
52 | Shen D X, Liu J G, Yang H X, et al. Highly thermally resistant and flexible polyimide aerogels containing rigid-rod biphenyl, benzimidazole, and triphenylpyridine moieties: synthesis and characterization[J]. Chemistry Letters, 2013, 42(12): 1545-1547. |
53 | Kawagishi K, Saito H, Furukawa H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels[J]. Macromolecular Rapid Communications, 2007, 28(1): 96-100. |
54 | Wu Y W, Ye M F, Zhang W C, et al. Polyimide aerogels crosslinked through cyclic ladder-like and cage polyamine functionalized polysilsesquioxanes[J]. Journal of Applied Polymer Science, 2017, 134(37): 45296. |
55 | Guo H Q, Meador M A B, McCorkle L S, et al. Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties[J]. RSC Advances, 2016, 6(31): 26055-26065. |
56 | Meador M A B, Alemán C R, Hanson K, et al. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1240-1249. |
57 | Zhang Z X, Pan Y L, Gong L L, et al. Mechanically strong polyimide aerogels cross-linked with low-cost polymers[J]. RSC Advances, 2021, 11(18): 10827-10835. |
58 | Wu T T, Dong J, de France K, et al. Fabrication of polyimide aerogels cross-linked by a cost-effective amine-functionalized hyperbranched polysiloxane (NH2-HBPSi)[J]. ACS Applied Polymer Materials, 2020, 2(9): 3876-3885. |
59 | Zhang Z, Wang X D, Zu G Q, et al. Effect of different chemical liquid deposition methods on the microstructure and properties of polyimide-polyvinylpolymethylsiloxane composite aerogels[J]. The Journal of Supercritical Fluids, 2020, 160: 104811. |
60 | Zhang Z, Wang X D, Liu T, et al. Properties improvement of linear polyimide aerogels via formation of doubly cross-linked polyimide-polyvinylpolymethylsiloxane network structure[J]. Journal of Non-Crystalline Solids, 2021, 559: 120679. |
61 | Pei X L, Zhai W T, Zheng W G. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(44): 13375-13383. |
62 | Xi S, Wang X D, Liu T, et al. Moisture-resistant and mechanically strong polyimide-polymethylsilsesquioxane hybrid aerogels with tunable microstructure[J]. Macromolecular Materials and Engineering, 2021, 306(4): 2000612. |
63 | Liu P, Tran T Q, Fan Z, et al. Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites[J]. Composites Science and Technology, 2015, 117: 114-120. |
64 | Fan W, Zuo L Z, Zhang Y F, et al. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure[J]. Composites Science and Technology, 2018, 156: 186-191. |
65 | Zhang D L, Lin Y, Wang W, et al. Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption[J]. Applied Surface Science, 2021, 543: 148833. |
66 | Wang Y N, Ge Q Y, Chen X L, et al. Ultralight and flexible MWNTs/polyimide hybrid aerogels for elastic conductors[J]. Macromolecular Materials and Engineering, 2017, 302(9): 1700082. |
67 | Zhang B, Wu P, Zou H W, et al. Morphology and properties of polyimide/multi-walled carbon nanotubes composite aerogels[J]. High Performance Polymers, 2018, 30(3): 292-302. |
68 | Wang Y X, He T J, Cheng Z, et al. Mechanically strong and tough polyimide aerogels cross-linked with amine functionalized carbon nanotubes synthesized by fluorine displacement reaction[J]. Composites Science and Technology, 2020, 195: 108204. |
69 | Zhou Y, Wang S J, Li D S, et al. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption[J]. Composites Part B: Engineering, 2021, 213: 108701. |
70 | Zuo L Z, Fan W, Zhang Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance[J]. Composites Science and Technology, 2017, 139: 57-63. |
71 | Kim M, Eo K, Lim H J, et al. Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres[J]. Composites Science and Technology, 2018, 165: 355-361. |
72 | Fan W, Zhang X, Zhang Y, et al. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature[J]. Composites Science and Technology, 2019, 173: 47-52. |
73 | Hou X B, Li Y, Luo X G, et al. SiC whiskers-reinforced polyimide aerogel composites with robust compressive properties and efficient thermal insulation performance[J]. Journal of Applied Polymer Science, 2021, 138(8): 49892. |
74 | Zhang X H, Ni X X, Li C X, et al. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy[J]. Journal of Materials Chemistry A, 2020, 8(19): 9701-9712. |
75 | 刘盼盼, 贾振新, 吕军军, 等. 有机-无机复合气凝胶研究进展[J]. 化学通报, 2019, 82(10): 867-877. |
Liu P P, Jia Z X, Lyu J J, et al. An overview on organic-inorganic composite aerogels[J]. Chemistry, 2019, 82(10): 867-877. | |
76 | Zhuo L H, Ma C, Xie F, et al. Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance[J]. Cellulose, 2020, 27(13): 7677-7689. |
77 | 陈宇卓, 欧忠文, 刘朝辉, 等. 隔热材料SiO2气凝胶改性研究进展[J]. 化工新型材料, 2017, 45(8): 45-47. |
Chen Y Z, Ou Z W, Liu Z H, et al. Review on the development of silica aerogel insulation materials' modification[J]. New Chemical Materials, 2017, 45(8): 45-47. | |
78 | Fei Z F, Yang Z C, Chen G B, et al. Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area[J]. Journal of Materials Science, 2018, 53(18): 12885-12893. |
79 | Fei Z F, Yang Z C, Chen G B, et al. Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride and 4, 4'-oxydianiline[J]. Journal of Sol-Gel Science and Technology, 2018, 85(3): 506-513. |
80 | Zhang X H, Ni X X, He M Y, et al. A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel[J]. Materials Chemistry Frontiers, 2021, 5(2): 804-816. |
81 | Zhao X Y, Yang F, Wang Z C, et al. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers[J]. Composites Part B: Engineering, 2020, 182: 107624. |
82 | Qian Z C, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 828-832. |
83 | Li D W, Liu H Z, Shen Y, et al. Preparation of PI/PTFE-PAI composite nanofiber aerogels with hierarchical structure and high-filtration efficiency[J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): 1806. |
84 | Yang F, Zhao X Y, Xue T T, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment[J]. Science China Materials, 2021, 64(5): 1267-1277. |
85 | Liu H, Chen X Y, Zheng Y J, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications[J]. Advanced Functional Materials, 2021, 31(13): 2008006. |
86 | Guo H Q, Meador M A B, McCorkle L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552. |
87 | Meador M A B, McMillon E, Sandberg A, et al. Dielectric and other properties of polyimide aerogels containing fluorinated blocks[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6062-6068. |
88 | Zhang X H, Li W, Song P Y, et al. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel[J]. Chemical Engineering Journal, 2020, 381: 122784. |
89 | Li X, Wang J, Zhao Y B, et al. Template-free self-assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16901-16910. |
90 | Chen Y, Shao G F, Kong Y, et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture[J]. Chemical Engineering Journal, 2017, 322: 1-9. |
91 | Mosanenzadeh S G, Karamikamkar S, Saadatnia Z, et al. PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications[J]. Separation and Purification Technology, 2020, 250: 117279. |
92 | Wang Y J, Cui Y, Shao Z Y, et al. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments[J]. Chemical Engineering Journal, 2020, 390: 124623. |
93 | Li X, Dong G Q, Liu Z W, et al. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy[J]. ACS Nano, 2021, 15(3): 4759-4768. |
94 | Li M M, Gan F, Dong J, et al. Facile preparation of continuous and porous polyimide aerogel fibers for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10416-10427. |
95 | Dai Y, Wu X Y, Liu Z S, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites Part B: Engineering, 2020, 200: 108263. |
96 | Mi H Y, Jing X, Meador M A B, et al. Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: output optimization and performance in circuits[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30596-30606. |
97 | Saadatnia Z, Mosanenzadeh S G, Esmailzadeh E, et al. A high performance triboelectric nanogenerator using porous polyimide aerogel film[J]. Scientific Reports, 2019, 9: 1370. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[9] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[13] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[14] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[15] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||