CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3472-3482.DOI: 10.11949/0438-1157.20220403
• Reviews and monographs • Previous Articles Next Articles
Jingwei ZHANG(), Yiwei ZHOU, Zhuo CHEN(), Jianhong XU()
Received:
2022-03-22
Revised:
2022-06-01
Online:
2022-09-06
Published:
2022-08-05
Contact:
Zhuo CHEN, Jianhong XU
通讯作者:
陈卓,徐建鸿
作者简介:
张经纬(1998—),男,博士研究生,1158844107@qq.com
基金资助:
CLC Number:
Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor[J]. CIESC Journal, 2022, 73(8): 3472-3482.
张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) Schematic diagram of the microreaction reaction experimental setup for the preparation of Gapentin; (b) Synthesis equation; (c) Schematic diagram of the internal structure of the microchannel[21]
1 | Hessel V, Kralisch D, Kockmann N, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry[J]. ChemSusChem, 2013, 6(5): 746-789. |
2 | Kockmann N, Gottsponer M, Zimmermann B, et al. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production[J]. Chemistry - A European Journal, 2008, 14(25): 7470-7477. |
3 | Andrews I, Cui J, DaSilva J, et al. Green chemistry articles of interest to the pharmaceutical industry[J]. Organic Process Research & Development, 2009, 13(3): 397-408. |
4 | Mason B P, Price K E, Steinbacher J L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews, 2007, 107(6): 2300-2318. |
5 | Roberge D M, Zimmermann B, Rainone F, et al. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway?[J]. Organic Process Research & Development, 2008, 12(5): 905-910. |
6 | Chen M, Buchwald S L. Continuous-flow synthesis of 1- substituted benzotriazoles from chloronitrobenzenes and amines in a C-N bond formation/hydrogenation/diazotization/cyclization sequence[J]. Angewandte Chemie International Edition, 2013, 52(15): 4247-4250. |
7 | Linares N, Hartmann S, Galarneau A, et al. Continuous partial hydrogenation reactions by Pd@unconventional bimodal porous titania monolith catalysts[J]. ACS Catalysis, 2012, 2(10): 2194-2198. |
8 | Hitzler M G, Smail F R, Ross S K, et al. Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process[J]. Organic Process Research & Development, 1998, 2(3): 137-146. |
9 | Nieuwelink A E, Vollenbroek J C, Ferreira de Abreu A C, et al. Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions[J]. Faraday Discussions, 2021, 229(1): 267-280. |
10 | Guo S, Zhu G, Zhan L, et al. Continuous kilogram-scale process for the synthesis strategy of 1,3,5-trimethyl-2-nitrobenzene in microreactor[J]. Chemical Engineering Research and Design, 2022, 178(1): 179-188. |
11 | Guo S, Zhan L, Zhu G, et al. Scale-up and development of synthesis 2-ethylhexyl nitrate in microreactor using the box-behnken design[J]. Organic Process Research & Development, 2022, 26(1): 174-182. |
12 | Hofmann A W. Ueber die einwirkung des broms in alkalischer lösung auf die amine[J]. Berichte der deutschen chemischen Gesellschaft, 1881, 14(2): 2725-2736. |
13 | Evans D A, Scheidt K A, Downey C W. Synthesis of ( - ) -epibatidine[J]. Organic Letters, 2001, 3(19): 3009-3012. |
14 | Wang Y, Liu X, Deng L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters[J]. Journal of the American Chemical Society, 2006, 128(12): 3928-3930. |
15 | Martinková M, Gonda J, Džoganová M. A new stereocontrolled approach to a key intermediate in the synthesis of (2S,3R)-capreomycidine[J]. Collection of Czechoslovak Chemical Communications, 2006, 71(8): 1199-1210. |
16 | Dai Y, Pang H, Huang J, et al. Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement[J]. RSC Advances, 2016, 6(41): 34514-34520. |
17 | Wang Z, Pelton R. Aminated thermoresponsive microgels prepared from the Hofmann rearrangement of amides without side reactions[J]. Langmuir, 2014, 30(23): 6763-6767. |
18 | Zhuang D, Gatera T, An Z, et al. Iron-catalyzed ring expansion of cyclobutanols for the synthesis of 1-pyrrolines by using MsONH3OTf[J]. Organic Letters, 2022, 24(2): 771-775. |
19 | Schäfer G, Fleischer T, Blumer N, et al. Initial route scouting and final process development for the multi-kg production of 3-fluoro-6-methoxyquinoline from p-anisidine and 2-fluoromalonic acid[J]. Organic Process Research & Development, 2022, 26(2): 347-357. |
20 | Huang J, Geng Y, Wang Y, et al. Efficient production of cyclopropylamine by a continuous-flow microreaction system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16389-16394. |
21 | Huang J P, Sang F N, Luo G S, et al. Continuous synthesis of Gabapentin with a microreaction system[J]. Chemical Engineering Science, 2017, 173: 507-513. |
22 | Gambacorta G, Baxendale I R. Continuous-flow Hofmann rearrangement using trichloroisocyanuric acid for the preparation of 2-benzoxazolinone[J]. Organic Process Research & Development, 2022, 26(2): 422-430. |
23 | Hu L, Yan Z, Mo X, et al. Morphology control synthesis of ZIF-8 as highly efficient catalyst for the cycloaddition of CO2 to cyclic carbonate[J]. ChemCatChem, 2019, 11(14): 3212-3219. |
24 | Xu B, Wang P, Lv M, et al. Transformation of carbon dioxide into oxazolidinones and cyclic carbonates catalyzed by rare-earth-metal phenolates[J]. ChemCatChem, 2016, 8(15): 2466-2471. |
25 | Ménard G, Stephan D W. Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane[J]. Journal of the American Chemical Society, 2010, 132(6): 1796-1797. |
26 | North M, Pasquale R. Mechanism of cyclic carbonate synthesis from epoxides and CO2 [J]. Angewandte Chemie International Edition, 2009, 48(16): 2946-2948. |
27 | Xu B H, Wang J Q, Sun J, et al. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach[J]. Green Chemistry, 2015, 17(1): 108-122. |
28 | Liu D, Li G, Liu H. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition[J]. Applied Surface Science, 2018, 428: 218-225. |
29 | Chu C, Zhang F, Zhu C, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
30 | Long W, Song Z, Ren T, et al. Analysis of heat transfer enhancement in a micro-scale heat sink structure[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(1): 011006. |
31 | Liu J, Yang G, Liu Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry, 2020, 22(14): 4509-4515. |
32 | Wu Y, Ding Y, Xu J, et al. Efficient fixation of CO2 into propylene carbonate with [BMIM]Br in a continuous-flow microreaction system[J]. Green Energy & Environment, 2021, 6(2): 291-297. |
33 | Peng J, Wang S, Yang H J, et al. Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions[J]. Fuel, 2018, 224: 481-488. |
34 | Wu Y, Chen A, Liu X, et al. Kinetic study of highly efficient CO2 fixation into propylene carbonate using a continuous-flow reactor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 159: 108235. |
35 | Li X, Liu X, Liu J, et al. The efficient catalytic microsystem with halogen-free catalyst for the intensification on CO2 cycloaddition[J]. Applied Catalysis B: Environmental, 2021, 283: 119629. |
36 | Tengfeng X, Dejun W, Lianjie Z, et al. Application of surface photovoltage technique to the determination of conduction types of azo pigment films[J]. The Journal of Physical Chemistry B, 2000, 104(34): 8177-8181. |
37 | Lomax S Q, Learner T. A review of the classes, structures, and methods of analysis of synthetic organic pigments[J]. Journal of the American Institute for Conservation, 2006, 45(2): 107-125. |
38 | Ishida R, Obara S, Masubuchi Y, et al. Induction of propranolol metabolism by the azo dye sudan III in rats[J]. Biochemical Pharmacology, 1992, 43(11): 2489-2492. |
39 | Sharma P, Rane N, Gurram V K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(16): 4185-4190. |
40 | Guerra E, Llompart M, Garcia-Jares C. Analysis of dyes in cosmetics: challenges and recent developments[J]. Cosmetics, 2018, 5(3): 47. |
41 | Feng G, Zhu M, Liu L, et al. A quantitative one-pot synthesis method for industrial azo pigments with recyclable wastewater[J]. Green Chemistry, 2019, 21(7): 1769-1776. |
42 | Yu Z, Ye X, Xu Q, et al. A fully continuous-flow process for the synthesis of p -cresol: impurity analysis and process optimization[J]. Organic Process Research & Development, 2017, 21(10): 1644-1652. |
43 | D'Attoma J, Camara T, Brun P L, et al. Efficient transposition of the sandmeyer reaction from batch to continuous process[J]. Organic Process Research & Development, 2017, 21(1): 44-51. |
44 | Yu Z, Lv Y, Yu C, et al. Continuous flow reactor for Balz-Schiemann reaction: a new procedure for the preparation of aromatic fluorides[J]. Tetrahedron Letters, 2013, 54(10): 1261-1263. |
45 | Malet-Sanz L, Madrzak J, Holvey R S, et al. A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor[J]. Tetrahedron Letters, 2009, 50(52): 7263-7267. |
46 | Aysha T, Zain M, Arief M, et al. Alkali-stable solid state fluorescent pyrazolo/pyrrolinone disperse dyes: synthesis and application for dyeing polyester fabric[J]. Journal of Molecular Structure, 2022, 1249: 131623. |
47 | Moorthy S, Castillo Bonillo A, Lambert H, et al. Modulating the reaction pathway of phenyl diazonium ions using host-guest complexation with cucurbit[7]uril[J]. Chemical Communications, 2022, 58(22): 3617-3620. |
48 | Shukla C A, Kulkarni A A, Ranade V V. Selectivity engineering of the diazotization reaction in a continuous flow reactor[J]. Reaction Chemistry & Engineering, 2016, 1(4): 387-396. |
49 | Wang F, Huang J, Xu J. Continuous-flow synthesis of azo dyes in a microreactor system[J]. Chemical Engineering and Processing - Process Intensification, 2018, 127: 43-49. |
50 | Pennemann H, Forster S, Kinkel J, et al. Improvement of dye properties of the azo pigment yellow 12 using a micromixer-based process[J]. Organic Process Research & Development, 2005, 9(2): 188-192. |
51 | Wille C, Gabski H P, Haller T, et al. Synthesis of pigments in a three-stage microreactor pilot plant—an experimental technical report[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 179-185. |
52 | Wang F J, Ding Y C, Xu J H. Continuous-flow synthesis of pigment red 146 in a microreactor system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16338-16347. |
53 | Greenway G M, Haswell S J, Morgan D O, et al. The use of a novel microreactor for high throughput continuous flow organic synthesis[J]. Sensors and Actuators B: Chemical, 2000, 63(3): 153-158. |
54 | Wang F J, Huang J P, Xu J H. Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process[J]. Organic Process Research & Development, 2019, 23(12): 2637-2646. |
55 | Jiang X, Li G, Liu S, et al. Synthesis of arenediazonium salts and Suzuki-Miyaura cross-coupling reaction in microreactors[J]. Journal of Flow Chemistry, 2021, 11(4): 843-853. |
56 | Wang F J, Chen A, Ling S, et al. Continuous-flow diazotization of red base KD hydrochloride suspensions in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(8): 1462-1474. |
57 | Hessell E T, Abramshe R A. Alkylated naphthalenes as high-performance synthetic fluids[J]. Journal of Synthetic Lubrication, 2003, 20(2): 109-122. |
58 | Li L, Zhao X, Chen C, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
59 | Wang J, Park J N, Park Y K, et al. Isopropylation of naphthalene by isopropyl alcohol over USY catalyst: an investigation in the high-pressure fixed-bed flow reactor[J]. Journal of Catalysis, 2003, 220(2): 265-272. |
60 | Aliyeva R V, Babashova Y M, Khamiyev M J, et al. The alkylation of oil fractions rich in aromatic hydrocarbons with C6, C8 and C10 α- olefins in the presence of ionic liquids catalytic systems[J]. Applied Petrochemical Research, 2021, 11(1): 65-77. |
61 | Blanco C G, Banciella D C, Azpíroz M D G. Alkylation of naphthalene using three different ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 203-206. |
62 | Li L, Zhang J, Du C, et al. Kinetics study of sulfuric acid alkylation of isobutane and butene using a microstructured chemical system[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1150-1158. |
63 | Li L, Zhang J, Du C, et al. Intensification of the sulfuric acid alkylation process with trifluoroacetic acid[J]. AIChE Journal, 2019, 65(1): 113-119. |
64 | Zheng W, Xie W, Sun W, et al. Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst[J]. Chemical Engineering Science, 2017, 166: 42-52. |
65 | Zhang H, Liu R, Yang Z, et al. Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids[J]. Fuel, 2018, 211: 233-240. |
66 | Yang T, Wang F, Huang J, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960. |
67 | Wang D, Zhang T, Yang Y, et al. Intensification of isobutane/1-butene alkylation process in a micromixing microreactor catalyzed by ILs/H2SO4 [J]. Chemical Engineering and Processing - Process Intensification, 2022, 174: 108865. |
68 | Cui P, Zhao G, Ren H, et al. Ionic liquid enhanced alkylation of iso-butane and 1-butene[J]. Catalysis Today, 2013, 200: 30-35. |
69 | Janardanan S, Papadaki M I, Waldram S P, et al. Toward an inherently safer alternative for operating N-oxidation of alkylpyridines: effect of N-oxide on lutidine-water phase separation[J]. Thermochimica Acta, 2017, 656: 38-46. |
70 | Lisicki D, Nowak K, Orlińska B. Methods to produce nicotinic acid with potential industrial applications[J]. Materials, 2022, 15(3): 765. |
71 | Mezyk L, Gut Z, Mohan K, et al. Initial research on thermal decomposition of 98% concentrated hydrogen peroxide in thruster-like conditions[J]. Engineering Science and Technology, an International Journal, 2022, 31: 101054. |
72 | Sang F, Huang J, Xu J. A circular microreaction method to the safe and efficient synthesis of 3-methylpyridine-N-oxide[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1320-1325. |
73 | Ley S V, Chen Y, Fitzpatrick D E, et al. A new world for chemical synthesis?[J]. CHIMIA, 2019, 73(10): 792. |
74 | Hamano M, Nagy K D, Jensen K F. Continuous flow metal-free oxidation of picolines using air[J]. Chemical Communications, 2012, 48(15): 2086. |
75 | Manikandan R, Anitha P, Prakash G, et al. Ruthenium(Ⅱ) carbonyl complexes containing pyridoxal thiosemicarbazone and trans-bis(triphenylphosphine/arsine): synthesis, structure and their recyclable catalysis of nitriles to amides and synthesis of imidazolines[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 312-324. |
[1] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[2] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[3] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[4] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[5] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[6] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[7] | Feishi XU, Lixia YANG, Guangwen CHEN. Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor [J]. CIESC Journal, 2022, 73(6): 2552-2562. |
[8] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[9] | Yiming XU, Hua YUAN, Suli LIU, Ping LI, Peirong YAN, Xi ZHAO, Junhua LU, Wei ZHAO, Xuelan ZHANG. Study on the continuous synthesis process of industrial mixed linear alkyl benzene sulfonates in a microchannel reactor [J]. CIESC Journal, 2022, 73(3): 1184-1193. |
[10] | Liang XIANG, Zihao ZHONG, Yuanhai SU. Advances on continuous synthesis of topological polymers in microreactors [J]. CIESC Journal, 2022, 73(12): 5275-5288. |
[11] | Kailun FANG, Shuaishuai CHEN, Jiawei FU, Xin JIANG. Effect of aging process on copper manganese composite catalyst [J]. CIESC Journal, 2022, 73(10): 4438-4447. |
[12] | Yongli MA, Mingyan LIU, Chen LI, Zongding HU. Research progress of liquid-solid and gas-liquid-solid mini- or micro-fluidizations [J]. CIESC Journal, 2022, 73(1): 46-58. |
[13] | XIE Qinyin, HUANG Xiaolian, LI Yuan, LI Ling, GE Xuehui, QIU Ting. Design optimization and photocatalytic performance research of TiO2 planar microreactor [J]. CIESC Journal, 2021, 72(7): 3626-3636. |
[14] | DONG Xiaorui, WANG Kai, LUO Guangsheng. Microreaction continuous synthesis of gold nanoparticles [J]. CIESC Journal, 2021, 72(7): 3823-3831. |
[15] | WANG Fajun, HUANG Jinpei, XU Jianhong. Kinetics of red base KD diazotization in microreactor system [J]. CIESC Journal, 2021, 72(2): 984-992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||