CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3483-3500.DOI: 10.11949/0438-1157.20220284
• Reviews and monographs • Previous Articles Next Articles
Kaihong TANG1,2(), Xiaofeng HE1, Guiqiu XU1, Yang YU1, Xiaofeng LIU1, Tiejun GE1,2(), Ailing ZHANG2()
Received:
2022-02-27
Revised:
2022-06-08
Online:
2022-09-06
Published:
2022-08-05
Contact:
Tiejun GE, Ailing ZHANG
唐恺鸿1,2(), 何晓峰1, 徐桂秋1, 于洋1, 刘啸凤1, 葛铁军1,2(), 张爱玲2()
通讯作者:
葛铁军,张爱玲
作者简介:
唐恺鸿(1994—),女,博士研究生,t_angkh@163.com
基金资助:
CLC Number:
Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams[J]. CIESC Journal, 2022, 73(8): 3483-3500.
唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500.
Add to citation manager EndNote|Ris|BibTeX
阻燃剂类型 | 阻燃剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
磷系阻燃剂 | DOPO-木纤维 | 35.0 | — | [ | |
磷系阻燃剂 | DOPO-木纤维 | 35.2 | — | [ | |
磷系阻燃剂 | DOPO-微晶纤维素 | 46.0 | — | [ | |
磷系阻燃剂 | DOPO-衣康酸-乙基纤维素 | 37.1 | — | [ | |
磷系阻燃剂 | 含磷聚醚增韧剂 | 49.5 | 41.5%↓ | [ | |
磷系阻燃剂 | 聚乙二醇磷酸盐 | 45.1 | 28.3%↓ | [ |
Table 1 Flame retardancy of phenolic foams with different flame retardants
阻燃剂类型 | 阻燃剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
磷系阻燃剂 | DOPO-木纤维 | 35.0 | — | [ | |
磷系阻燃剂 | DOPO-木纤维 | 35.2 | — | [ | |
磷系阻燃剂 | DOPO-微晶纤维素 | 46.0 | — | [ | |
磷系阻燃剂 | DOPO-衣康酸-乙基纤维素 | 37.1 | — | [ | |
磷系阻燃剂 | 含磷聚醚增韧剂 | 49.5 | 41.5%↓ | [ | |
磷系阻燃剂 | 聚乙二醇磷酸盐 | 45.1 | 28.3%↓ | [ |
阻燃剂类型 | 阻燃剂 | LOI/% | pHRR 变化率 | 文献 |
---|---|---|---|---|
纳米颗粒 | TiN | 34.2 | — | [ |
纳米颗粒 | SiO2 | 38.0 | — | [ |
纳米颗粒 | Al2O3 | 39.3 | 8.3%↓ | [ |
纳米颗粒 | ZrO2 | 38.9 | 2.8%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/ZnO | 73.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/MoO3 | 71.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/CuCl2 | 71.5 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/SnCl2 | 72.0 | >75.0%↓ | [ |
纤维/纳米颗粒 | 玻璃纤维/ 纳米黏土 | 32.0 | 12.7%↓ | [ |
— | 氧化石墨烯 | 40.0 | 22.2%↓ | [ |
纳米颗粒/氧化石墨烯 | 磷酸锆-氧化 石墨烯 | 42.5 | 25.0%↓ | [ |
纳米颗粒/氧化石墨烯 | SiO2-氧化石墨烯 | 41.0 | 21.4%↓ | [ |
纳米颗粒/氧化石墨烯 | CoAl-氧化石墨烯 | 38.5 | 8.4%↓ | [ |
Table 2 Flame retardancy of phenolic foams with different nanoscale inorganic flame retardants
阻燃剂类型 | 阻燃剂 | LOI/% | pHRR 变化率 | 文献 |
---|---|---|---|---|
纳米颗粒 | TiN | 34.2 | — | [ |
纳米颗粒 | SiO2 | 38.0 | — | [ |
纳米颗粒 | Al2O3 | 39.3 | 8.3%↓ | [ |
纳米颗粒 | ZrO2 | 38.9 | 2.8%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/ZnO | 73.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/MoO3 | 71.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/CuCl2 | 71.5 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/SnCl2 | 72.0 | >75.0%↓ | [ |
纤维/纳米颗粒 | 玻璃纤维/ 纳米黏土 | 32.0 | 12.7%↓ | [ |
— | 氧化石墨烯 | 40.0 | 22.2%↓ | [ |
纳米颗粒/氧化石墨烯 | 磷酸锆-氧化 石墨烯 | 42.5 | 25.0%↓ | [ |
纳米颗粒/氧化石墨烯 | SiO2-氧化石墨烯 | 41.0 | 21.4%↓ | [ |
纳米颗粒/氧化石墨烯 | CoAl-氧化石墨烯 | 38.5 | 8.4%↓ | [ |
改性方法 | 改性剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
整体投料 | 双氰胺 | 48.1 | 19.1%↓ | [ | |
羟甲基苯酚改性 | 双酚A二缩水甘油醚 | — | 133.0%↑ | [ | |
羟甲基苯酚改性 | 溴化双酚A环氧树脂 | — | 37.7%↓ | [ | |
羟甲基苯酚改性 | 蒙脱土/生物油 | 39.7 | — | [ | |
原材料替代 | 含羞草树皮单宁 | — | 88.7%↓ | [ | |
原材料替代 | 磺化落叶松单宁 | 47.8 | — | [ | |
原材料替代 | 硫酸盐木质素 | 34.0 | 0.4%↑ | [ | |
原材料替代 | HBr催化木质素 | 43.6 | — | [ |
Table 3 Flame retardancy of chemically modified phenolic foams
改性方法 | 改性剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
整体投料 | 双氰胺 | 48.1 | 19.1%↓ | [ | |
羟甲基苯酚改性 | 双酚A二缩水甘油醚 | — | 133.0%↑ | [ | |
羟甲基苯酚改性 | 溴化双酚A环氧树脂 | — | 37.7%↓ | [ | |
羟甲基苯酚改性 | 蒙脱土/生物油 | 39.7 | — | [ | |
原材料替代 | 含羞草树皮单宁 | — | 88.7%↓ | [ | |
原材料替代 | 磺化落叶松单宁 | 47.8 | — | [ | |
原材料替代 | 硫酸盐木质素 | 34.0 | 0.4%↑ | [ | |
原材料替代 | HBr催化木质素 | 43.6 | — | [ |
1 | Song X R, Xiao W X, Wang P, et al. Hollow glass microspheres-based ultralight non-combustible thermal insulation foam with point-to-point binding structure using solvent evaporation method[J]. Construction and Building Materials, 2021, 292: 123415. |
2 | Farhan S, Wang R M, Jiang H, et al. Use of waste rigid polyurethane for making carbon foam with fireproofing and anti-ablation properties[J]. Materials & Design, 2016, 101: 332-339. |
3 | Mougel C, Garnier T, Cassagnau P, et al. Phenolic foams: a review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer, 2019, 164: 86-117. |
4 | Kim M, Choe J, Lee D G. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb[J]. Composite Structures, 2016, 158: 227-234. |
5 | Pilato L. Phenolic Resins: a Century of Progress[M]. Berlin: Springer, 2010: 189-208. |
6 | 艾江. 酚醛保温材料的性能及发展趋势[J]. 上海塑料, 2016(1): 32-34. |
Ai J. Performance and development trend of phenolic thermal insulation material[J]. Shanghai Plastics, 2016(1): 32-34. | |
7 | Song F, Jia P Y. Flame retardant modification of phenolic foam [M]// Sandhya P K, Sreekala M S, Sabu T. Phenolic Based Foams . Singapore: Springer, 2022: 195-207. |
8 | McKenna S T, Jones N, Peck G, et al. Fire behaviour of modern façade materials—understanding the Grenfell Tower fire[J]. Journal of Hazardous Materials, 2019, 368: 115-123. |
9 | Sun S B, Ma B G, Chen M, et al. Heating process of thermosetting insulation materials for buildings[J]. Journal of Wuhan University of Technology—Mater. Sci. Ed., 2012, 27(5): 962-966. |
10 | Papadogianni V, Romeos A, Giannadakis A, et al. Cone calorimeter and thermogravimetric analysis of glass phenolic composites used in aircraft applications[J]. Fire Technology, 2020, 56(3): 1253-1285. |
11 | Tang K H, Zhang A L, Ge T J, et al. Research progress on modification of phenolic resin[J]. Materials Today Communications, 2021, 26: 101879. |
12 | 马俊杰, 程珏, 杨万泰. 多聚甲醛/苯酚树脂活性和性能[J]. 化工学报, 2006, 57(7): 1689-1693. |
Ma J J, Cheng J, Yang W T. Reactivity and property of phenolic resin synthesized by phenol and paraformaldehyde[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1689-1693. | |
13 | Bo C Y, Shi Z Y, Hu L H, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports, 2020, 10: 12082. |
14 | Ge T J, Tang K H, Zhang A L. Toughened phenolic foams [M]// Sandhya P K, Sreekala M S, Sabu T. Phenolic Based Foams. Singapore: Springer, 2022: 81-101. |
15 | Lazar S T, Kolibaba T J, Grunlan J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020, 5(4): 259-275. |
16 | Hidalgo J P, Torero J L, Welch S. Fire performance of closed-cell charring insulation materials in plasterboard-insulation assemblies[J]. Fire and Materials, 2019, 43(6): 632-643. |
17 | Hidalgo J P, Torero J L, Welch S. Fire performance of charring closed-cell polymeric insulation materials: polyisocyanurate and phenolic foam[J]. Fire and Materials, 2018, 42(4): 358-373. |
18 | Hidalgo J P, Torero J L, Welch S. Experimental characterisation of the fire behaviour of thermal insulation materials for a performance-based design methodology[J]. Fire Technology, 2017, 53(3): 1201-1232. |
19 | Torero J L, Gerhard J I, Martins M F, et al. Processes defining smouldering combustion: integrated review and synthesis[J]. Progress in Energy and Combustion Science, 2020, 81: 100869. |
20 | Lin S R, Huang X Y. Quenching of smoldering: effect of wall cooling on extinction[J]. Proceedings of the Combustion Institute, 2021, 38(3): 5015-5022. |
21 | Huang X Y, Gao J. A review of near-limit opposed fire spread[J]. Fire Safety Journal, 2021, 120: 103141. |
22 | 卓萍, 赵璧, 王国辉. 典型保温材料阴燃特性研究[C]//2015年中国阻燃学术年会论文集. 杭州:中国兵工学会, 中国阻燃学会, 2015: 454-458. |
Zhuo P, Zhao B, Wang G H. Research on smoldering characteristics of typical thermal insulation materials[C]//2015 China Flame Retardant Academic Annual Conference Proceedings. Hangzhou: China Ordnance Society, China Flame Retardant Society, 2015: 454-458. | |
23 | Wang Y, Wang S J, Bian C, et al. Effect of chemical structure and cross-link density on the heat resistance of phenolic resin[J]. Polymer Degradation and Stability, 2015, 111: 239-246. |
24 | Jiang H Y, Wang J G, Wu S Q, et al. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polymer Degradation and Stability, 2012, 97(8): 1527-1533. |
25 | 朱其仁, 李锦春, 王丽娟, 等. 苯酚-亚联苯型酚醛树脂的合成与表征[J]. 化工学报, 2009, 60(4): 1052-1056. |
Zhu Q R, Li J C, Wang L J, et al. Synthesis and characterization of phenol-biphenylene resin[J]. CIESC Journal, 2009, 60(4): 1052-1056. | |
26 | Zhang W, Ma Y F, Chu F X, et al. The influence of formaldehyde/phenol ratio on properties of foamable phenolic resin and phenolic foam[J]. Advanced Materials Research, 2011, 250/251/252/253: 523-527. |
27 | Hu X M, Zhao Y Y, Cheng W M. Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature[J]. Polymer Composites, 2015, 36(8): 1531-1540. |
28 | Chen X K, Yu W C, Ma L, et al. Mechanical properties and thermal characteristics of different-density phenolic foams[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 393-401. |
29 | Tang K H, He X F, Xu G Q, et al. Effect of formaldehyde to phenol molar ratio on combustion behavior of phenolic foam[J]. Polymer Testing, 2022, 111: 107626. |
30 | 孙艺, 姜润韬, 金晶, 等. 高分子材料阻燃与抑烟的分立设计思想[J]. 化工学报, 2022, 73(1): 18-31. |
Sun Y, Jiang R T, Jin J, et al. Separation design strategy for flame retardancy and smoke suppression of polymer materials[J]. CIESC Journal, 2022, 73(1): 18-31. | |
31 | Ma Y F, Geng X, Zhang X, et al. A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams[J]. Polish Journal of Chemical Technology, 2018, 20(2): 47-53. |
32 | Ma Y F, Wang C P, Chu F X. Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites[J]. BioResources, 2017, 12(3): 4722-4736. |
33 | Gao L, Tang Q H, Chen Y P, et al. Investigation of novel lightweight phenolic foam-based composites reinforced with flax fiber mats[J]. Polymer Composites, 2018, 39(6): 1809-1817. |
34 | Liu J, Wang L L, Zhang W, et al. Phenolic resin foam composites reinforced by acetylated poplar fiber with high mechanical properties, low pulverization ratio, and good thermal insulation and flame retardant performance[J]. Materials, 2020, 13(1): 148. |
35 | Ma Y, Geng X, Zhang X, et al. Synthesis of DOPO-g-GPTS modified wood fiber and its effects on the properties of composite phenolic foams[J]. Journal of Applied Polymer Science, 2019, 136(2): 46917. |
36 | Ma Y F, Gong X N, Jia P Y. The effects of DOPO-g-ITA modified microcrystalline cellulose on the properites of composite phenolic foams[J]. Journal of Renewable Materials, 2020, 8(1): 45-55. |
37 | Ma Y F, Gong X N, Liao C H, et al. Preparation and characterization of DOPO-ITA modified ethyl cellulose and its application in phenolic foams[J]. Polymers, 2018, 10(10): 1049. |
38 | Yang H Y, Wang X, Yuan H X, et al. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J]. Journal of Polymer Research, 2012, 19(3): 9831. |
39 | Sui X Y, Wang Z Z. Flame-retardant and mechanical properties of phenolic foams toughened with polyethylene glycol phosphates[J]. Polymers for Advanced Technologies, 2013, 24(6): 593-599. |
40 | Xu S H, Sui X Y, Wang Z Z. Flammability and mechanical properties of toughened phenolic foams containing APP, MP and MCA[J]. Advanced Materials Research, 2013, 671/672/673/674: 1809-1812. |
41 | Liu L, Wang Z Z. Facile synthesis of a novel magnesium amino-tris-(methylenephosphonate)-reduced graphene oxide hybrid and its high performance in mechanical strength, thermal stability, smoke suppression and flame retardancy in phenolic foam[J]. Journal of Hazardous Materials, 2018, 357: 89-99. |
42 | Ding H Y, Wang J F, Liu J, et al. Preparation and properties of a novel flame retardant polyurethane quasi-prepolymer for toughening phenolic foam[J]. Journal of Applied Polymer Science, 2015, 132(35): 42424. |
43 | Bo C Y, Wei S K, Hu L H, et al. Synthesis of a cardanol-based phosphorus-containing polyurethane prepolymer and its application in phenolic foams[J]. RSC Advances, 2016, 6(67): 62999-63005. |
44 | Yuan H X, Xing W Y, Yang H Y, et al. Mechanical and thermal properties of phenolic/glass fiber foam modified with phosphorus-containing polyurethane prepolymer[J]. Polymer International, 2013, 62(2): 273-279. |
45 | Bo C Y, Yang X H, Hu L H, et al. Enhancement of flame-retardant and mechanical performance of phenolic foam with the incorporation of cardanol-based siloxane[J]. Polymer Composites, 2019, 40(6): 2539-2547. |
46 | Yang H Y, Wang X, Yu B, et al. A novel polyurethane prepolymer as toughening agent: preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam[J]. Journal of Applied Polymer Science, 2013, 128(5): 2720-2728. |
47 | 张西莹, 刘育红. 酚醛树脂/碳化硼/聚硼氮烷复合物的固化行为及其热解性能[J]. 化工学报, 2014, 65(8): 3268-3276. |
Zhang X Y, Liu Y H. Curing and pyrolysis behavior of PF/B4C/PBZ composite[J]. CIESC Journal, 2014, 65(8): 3268-3276. | |
48 | Liu L, Fu M T, Wang Z Z. Synthesis of boron-containing toughening agents and their application in phenolic foams[J]. Industrial & Engineering Chemistry Research, 2015, 54(7): 1962-1970. |
49 | Xu W Z, Chen R, Xu J Y, et al. Preparation and mechanism of polyurethane prepolymer and boric acid co-modified phenolic foam composite: mechanical properties, thermal stability, and flame retardant properties[J]. Polymers for Advanced Technologies, 2019, 30(7): 1738-1750. |
50 | Hu L F, Wang Z Z, Zhao Q L. Flame retardant and mechanical properties of toughened phenolic foams containing a melamine phosphate borate[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 678-686. |
51 | Kumar S A, Kumar S A, Nagaraja B K. Thermal stability and flammability characteristics of phenolic syntactic foam core sandwich composites[J]. Journal of Sandwich Structures & Materials, 2021, 23(7): 3234-3249. |
52 | 葛铁军, 王佳, 肖尚雄. 成核剂对酚醛泡沫微观结构及性能的影响[J]. 塑料科技, 2016, 44(11): 41-46. |
Ge T J, Wang J, Xiao S X. Effects of nucleating agent on microstructure and properties of phenolic foam[J]. Plastics Science and Technology, 2016, 44(11): 41-46. | |
53 | Li Q L, Chen L, Li X H, et al. Effect of nano-titanium nitride on thermal insulating and flame-retardant performances of phenolic foam[J]. Journal of Applied Polymer Science, 2016, 133(32): 43765. |
54 | Yuan J J, Zhang Y B, Wang Z Z. Phenolic foams toughened with crosslinked poly (n-butyl acrylate)/silica core-shell nanocomposite particles[J]. Journal of Applied Polymer Science, 2015, 132(40): 42590. |
55 | Zhu Y X, Wang Z Z. Phenolic foams, modified by nano-metallic oxides, improved in mechanical strengths and friability[J]. Iranian Polymer Journal, 2016, 25(7): 579-587. |
56 | Ma Y F, Wang J F, Xu Y Z, et al. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1143-1151. |
57 | Hu X M, Cheng W M, Nie W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016, 37(8): 2323-2332. |
58 | Li X Y, Wang Z Z, Wu L X, et al. One-step in situ synthesis of a novel α-zirconium phosphate/graphene oxide hybrid and its application in phenolic foam with enhanced mechanical strength, flame retardancy and thermal stability[J]. RSC Advances, 2016, 6(78): 74903-74912. |
59 | Li X Y, Wang Z Z, Wu L X. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Advances, 2015, 5(121): 99907-99913. |
60 | Wang Z Z, Li X Y. Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams[J]. High Performance Polymers, 2018, 30(6): 688-698. |
61 | Li Q L, Chen L, Li X H, et al. Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in situ polymerization[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 214-225. |
62 | Tang K H, Yu Y, Xu G Q, et al. Preparation of a ceramifiable phenolic foam and its ceramization behavior[J]. Polymers, 2022, 14(8): 1591. |
63 | 王建, 雷子萱, 姚家钰, 等. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415. |
Wang J, Lei Z X, Yao J Y, et al. Synthesis and curing kinetics of terephthalaldehyde phenolic resin[J]. CIESC Journal, 2022, 73(3): 1403-1415. | |
64 | Ge T J, Tang K H, Tang X J. Preparation and properties of acetoacetic ester-terminated polyether pre-synthesis modified phenolic foam[J]. Materials, 2019, 12(3): 334. |
65 | Xu P P, Yu Y X, Chang M M, et al. Preparation and characterization of bio-oil phenolic foam reinforced with montmorillonite[J]. Polymers, 2019, 11(9): 1471. |
66 | Chen X Y, Li J X, Essawy H, et al. Flame-retardant and thermally-insulating tannin and soybean protein isolate (SPI) based foams for potential applications in building materials[J]. Construction and Building Materials, 2022, 315: 125711. |
67 | Ge T J, Tang K H, Yu Y, et al. Preparation and properties of the 3-pentadecyl-phenol in situ modified foamable phenolic resin[J]. Polymers, 2018, 10(10): 1124. |
68 | Gao M, Wu W H, Wang Y H, et al. Phenolic foam modified with dicyandiamide as toughening agent[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 189-195. |
69 | Auad M L, Zhao L H, Shen H B, et al. Flammability properties and mechanical performance of epoxy modified phenolic foams[J]. Journal of Applied Polymer Science, 2007, 104(3): 1399-1407. |
70 | Yu Y X, Wang Y F, Xu P P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials, 2018, 11(11): 2228. |
71 | Delgado-Sánchez C, Sarazin J, Santiago-Medina F J, et al. Impact of the formulation of biosourced phenolic foams on their fire properties[J]. Polymer Degradation and Stability, 2018, 153: 1-14. |
72 | Li J J, Zhang A B, Zhang S F, et al. Larch tannin-based rigid phenolic foam with high compressive strength, low friability, and low thermal conductivity reinforced by cork powder[J]. Composites Part B: Engineering, 2019, 156: 368-377. |
73 | 葛铁军, 唐恺鸿, 于洋, 等. 间十五烷基酚对酚醛泡沫的改性[J]. 工程塑料应用, 2018, 46(9): 29-34. |
Ge T J, Tang K H, Yu Y, et al. Reasearch on 3-pentadecyl-phenol modified phenolic foam[J]. Engineering Plastics Application, 2018, 46(9): 29-34. | |
74 | Li B, Yuan Z S, Schmidt J, et al. New foaming formulations for production of bio-phenol formaldehyde foams using raw kraft lignin[J]. European Polymer Journal, 2019, 111: 1-10. |
75 | Gao C, Li M, Zhu C J, et al. One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation[J]. Composites Part B: Engineering, 2021, 205: 108530. |
76 | Bo C Y, Hu L H, Chen Y, et al. Synthesis of a novel cardanol-based compound and environmentally sustainable production of phenolic foam[J]. Journal of Materials Science, 2018, 53(15): 10784-10797. |
77 | Ma Y F, Gong X N, Xie B, et al. Synthesis and characterization of DOPO-g-CNSL and its effect on the properties of phenolic foams[J]. Journal of Renewable Materials, 2019, 7(10): 1037-1046. |
78 | Song F, Jia P Y, Bo C Y, et al. Preparation and characterization of tung oil toughened modified phenolic foams with enhanced mechanical properties and smoke suppression[J]. Journal of Renewable Materials, 2020, 8(5): 535-547. |
79 | Song F, Li Z, Jia P Y, et al. Phosphorus-containing tung oil-based siloxane toughened phenolic foam with good mechanical properties, fire performance and low thermal conductivity[J]. Materials & Design, 2020, 192: 108668. |
80 | Song F, Jia P Y, Xiao Y N, et al. Study on toughening phenolic foams in phosphorus-containing tung oil-based derivatives[J]. Journal of Renewable Materials, 2019, 7(10): 1011-1021. |
81 | Li T T, Yu R B, Zhao D D. Effective halogen- and phosphorus-free polyphenylene ether resin-based flame-retardant foam[J]. ACS Omega, 2021, 6(23): 15246-15256. |
82 | Ge T J, Hu X Q, Tang K H, et al. The preparation and properties of terephthalyl-alcohol-modified phenolic foam with high heat aging resistance[J]. Polymers, 2019, 11(8): 1267. |
83 | 葛铁军, 胡晓岐, 王东奇. 4, 4'-二氯二苯砜改性酚醛泡沫的制备及其耐热性能[J]. 工程塑料应用, 2019, 47(11): 7-12. |
Ge T J, Hu X Q, Wang D Q. Preparation and heat resistance of 4, 4'-dichlorodiphenyl sulfone modified phenolic foams[J]. Engineering Plastics Application, 2019, 47(11): 7-12. | |
84 | 葛铁军, 唐恺鸿, 王东奇, 等. 芳烷基醚改性可发性酚醛树脂的制备及性能[J]. 塑料科技, 2018, 46(12): 84-89. |
Ge T J, Tang K H, Wang D Q, et al. Preparation and properties of aralkyl ether modified foamable phenolic resin[J]. Plastics Science and Technology, 2018, 46(12): 84-89. | |
85 | Chen G L, Liu J, Zhang W, et al. Lignin-based phenolic foam reinforced by poplar fiber and isocyanate-terminated polyurethane prepolymer[J]. Polymers, 2021, 13(7): 1068. |
86 | Song F, Jia P Y, Bo C Y, et al. The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in situ polymerization[J]. Journal of Dispersion Science and Technology, 2021, 42(7): 1042-1051. |
87 | Zhang L F, Liang S Q, Chen Z L. Influence of particle size and addition of recycling phenolic foam on mechanical and flame retardant properties of wood-phenolic composites[J]. Construction and Building Materials, 2018, 168: 1-10. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[3] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[6] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[7] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[8] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[9] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[10] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[11] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[12] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[13] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[14] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[15] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||