CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3597-3607.DOI: 10.11949/0438-1157.20220258
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuehui HOU1,2(), Xuan LIU1,2, Yingjiang LIAN1, Mei HAN1, Chaoqun YAO1(), Guangwen CHEN1()
Received:
2022-02-24
Revised:
2022-06-09
Online:
2022-09-06
Published:
2022-08-05
Contact:
Chaoqun YAO, Guangwen CHEN
侯跃辉1,2(), 刘璇1,2, 廉应江1, 韩梅1, 尧超群1(), 陈光文1()
通讯作者:
尧超群,陈光文
作者简介:
侯跃辉(1998—),女,硕士研究生,houyuehui@dicp.ac.cn
基金资助:
CLC Number:
Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor[J]. CIESC Journal, 2022, 73(8): 3597-3607.
侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607.
Sample No. | 设定浓度/(mol/L) | 外标法测定浓度/(mol/L) | ||||
---|---|---|---|---|---|---|
PG | TNPG | PG | PG-S | PG总量 | TNPG | |
1 | 0.0412 | 0.0061 | 0.0105 | 0.0332 | 0.0437 | 0.0061 |
2 | 0.0212 | 0.0047 | 0.0059 | 0.0181 | 0.0240 | 0.0047 |
3 | 0.0419 | 0.0049 | 0.0106 | 0.0313 | 0.0419 | 0.0048 |
Table 1 Comparison between measurement by external standard method and set values
Sample No. | 设定浓度/(mol/L) | 外标法测定浓度/(mol/L) | ||||
---|---|---|---|---|---|---|
PG | TNPG | PG | PG-S | PG总量 | TNPG | |
1 | 0.0412 | 0.0061 | 0.0105 | 0.0332 | 0.0437 | 0.0061 |
2 | 0.0212 | 0.0047 | 0.0059 | 0.0181 | 0.0240 | 0.0047 |
3 | 0.0419 | 0.0049 | 0.0106 | 0.0313 | 0.0419 | 0.0048 |
温度/℃ | 黏度/(mPa·s) | ||
---|---|---|---|
98%硫酸[ | PG溶液 (1 mol/L) | 硝硫混酸 (硝硫比1/3.9) | |
10 | 35.1 | 134.1 | 62.6 |
20 | 25.8 | 87.1 | 50.8 |
30 | 17.1 | 57.5 | 31.3 |
40 | 12.9 | 31.3 | 22.7 |
Table 2 Reactant viscosity at different temperatures
温度/℃ | 黏度/(mPa·s) | ||
---|---|---|---|
98%硫酸[ | PG溶液 (1 mol/L) | 硝硫混酸 (硝硫比1/3.9) | |
10 | 35.1 | 134.1 | 62.6 |
20 | 25.8 | 87.1 | 50.8 |
30 | 17.1 | 57.5 | 31.3 |
40 | 12.9 | 31.3 | 22.7 |
溶液/%(质量) | 黏度/(mPa∙s) |
---|---|
甘油/水 | |
80 | 69.6 |
85 | 135.9 |
甘油/乙醇 | |
20 | 2.82 |
65 | 47.8 |
Table 3 Viscosities of glycerol-water mixture and glycerol-ethanol mixtures at room temperature (18℃)
溶液/%(质量) | 黏度/(mPa∙s) |
---|---|
甘油/水 | |
80 | 69.6 |
85 | 135.9 |
甘油/乙醇 | |
20 | 2.82 |
65 | 47.8 |
工艺 | PG反应液 | 硝化试剂 | 整体 | 两相流量比 (混酸/PG) | |
---|---|---|---|---|---|
CPG/(mol/L) | N/S | S/PG | N/PG | ||
本工艺 | 1.0 | 1/3.9 | 34.1/1 | 4/1 | 1 |
Cantillo等[ | 1.0 | 1/12.3 | 54.6/1 | 3/1 | 2 |
釜式[ | 1.14 | 1/1.25 | 20.8/1 | 4/1 | — |
Table 4 Comparison of sulfuric acid usage between different process conditions
工艺 | PG反应液 | 硝化试剂 | 整体 | 两相流量比 (混酸/PG) | |
---|---|---|---|---|---|
CPG/(mol/L) | N/S | S/PG | N/PG | ||
本工艺 | 1.0 | 1/3.9 | 34.1/1 | 4/1 | 1 |
Cantillo等[ | 1.0 | 1/12.3 | 54.6/1 | 3/1 | 2 |
釜式[ | 1.14 | 1/1.25 | 20.8/1 | 4/1 | — |
1 | Hegetschweiler K, Erni I, Schneider W, et al. Preparation, characterisation, and structure of N-methylated derivatives of 1,3,5-triamino-1,3,5-trideoxy-cis-inositol: polyalcohols with unusual acidity[J]. Helvetica Chimica Acta, 1990, 73(1): 97-105. |
2 | Crisponi G, Nurchi V M, Crespo-Alonso M, et al. Chelating agents for metal intoxication[J]. Current Medicinal Chemistry, 2012, 19(17): 2794-2815. |
3 | Ramadan A M, Calatayud S J M, Parac-Vogt T N. Trinuclear rare earth metal complexes based on 1,3,5-triamino-1,3,5-trideoxy-cis-inositol as catalysts for the hydrolysis of phosphodiesters[J]. Dalton Transactions (Cambridge, England: 2003), 2011, 40(6): 1230-1232. |
4 | 黄靖伦, 张丽媛, 马卿, 等. 无氯TATB的合成工艺改进[J]. 含能材料, 2012, 20(5): 551-554. |
Huang J L, Zhang L Y, Ma Q, et al. Improvement of synthesis technology of TATB free from chloride[J]. Chinese Journal of Energetic Materials, 2012, 20(5): 551-554. | |
5 | 李明豪. 高品质无氯TATB的绿色合成研究[D]. 南京: 南京理工大学, 2013. |
Li M H. Studies on green synthesis of high quality TATB free from chloride[D]. Nanjing: Nanjing University of Science and Technology, 2013. | |
6 | 高鸿宾. 有机化学[M]. 4版. 北京: 高等教育出版社, 2005:5. |
Gao H B. Organic Chemistry[M]. 4th ed. Beijing: Higher Education Press,2005: 5. | |
7 | 杨学斌. TATB合成工艺研究[D]. 北京: 北京理工大学, 2016. |
Yang X B. Study on synthesis technology of TATB[D]. Beijing: Beijing Institute of Technology, 2016. | |
8 | 常婷. 无氯TATB合成工艺及其应用研究[D]. 南京: 南京理工大学, 2018. |
Chang T. Study on synthesis technogy of TATB without chlorine and its application[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
9 | 陈光文. 微化工技术研究进展[J]. 现代化工, 2007, 27(10): 8-13. |
Chen G W. Advance and prospect of microchemical engineering and technology[J]. Modern Chemical Industry, 2007, 27(10): 8-13. | |
10 | Yu W F, Wei Z Y, Xu R J, et al. Explosive synthesis: novel intrinsically safe method and application with micro-channel reactor[J]. Journal of Physics: Conference Series, 2020, 1507(2): 022030. |
11 | Dong Z Y, Zhao S N, Zhang Y C, et al. Mixing and residence time distribution in ultrasonic microreactors[J]. AIChE Journal, 2017, 63(4): 1404-1418. |
12 | Hartman R L, Naber J R, Zaborenko N, et al. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C-N bond formation in microreactors[J]. Organic Process Research & Development, 2010, 14(6): 1347-1357. |
13 | Castro F, Kuhn S, Jensen K, et al. Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems[J]. Chemical Engineering Journal, 2013, 215/216: 979-987. |
14 | Horie T, Sumino M, Tanaka T, et al. Photodimerization of maleic anhydride in a microreactor without clogging[J]. Organic Process Research & Development, 2010, 14(2): 405-410. |
15 | Zhao S N, Yao C Q, Dong Z Y, et al. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor[J]. Chemical Engineering Science, 2018, 186: 122-134. |
16 | Zhao S N, Yao C Q, Dong Z Y, et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 2020, 48: 88-99. |
17 | Dong Z Y, Yao C Q, Zhang Y C, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal, 2016, 62(4): 1294-1307. |
18 | Cantillo D, Damm M, Dallinger D, et al. Sequential nitration/hydrogenation protocol for the synthesis of triaminophloroglucinol: safe generation and use of an explosive intermediate under continuous-flow conditions[J]. Organic Process Research & Development, 2014, 18(11): 1360-1366. |
19 | Rhodes F H, Barbour C B. The viscosities of mixtures of sulfuric acid and water[J]. Industrial & Engineering Chemistry, 1923, 15(8): 850-852. |
20 | 刘光启. 化学化工物性数据手册:无机卷[M]. 北京: 化学工业出版社, 2002: 66. |
Liu G Q. Handbook of Physical Property Data for Chemistry and Chemical Engineering: Inorganic Volume[M]. Beijing: Chemical Industry Press, 2002: 66. | |
21 | Zhao S N, Yao C Q, Zhang Q, et al. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: the effects of channel dimension, solvent properties and temperature[J]. Chemical Engineering Journal, 2019, 374: 68-78. |
22 | Zhao S N, Dong Z Y, Yao C Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement[J]. AIChE Journal, 2018, 64(4): 1412-1423. |
23 | Guo C, Liu J, Li X H, et al. Effect of cavitation bubble on the dispersion of magnetorheological polishing fluid under ultrasonic preparation[J]. Ultrasonics Sonochemistry, 2021, 79: 105782. |
24 | Ozcelik A, Ahmed D, Xie Y L, et al. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls[J]. Analytical Chemistry, 2014, 86(10): 5083-5088. |
25 | Wu W Q, Feng W, Lin Q H, et al. Synthesis and thermal decomposition of TNPG[J]. Thermochimica Acta, 2020, 683: 178396. |
26 | Cho J K, Kim Y T, Kim Y G, et al. Practical neutral aromatic nitration with nitrogen dioxide in the presence of heterogeneous catalysts under moderate oxygen pressure[J]. Research on Chemical Intermediates, 2006, 32(8): 759-766. |
27 | Ross D S, Kuhlmann K F, Malhotra R. Studies in aromatic nitration. 2. Nitrogen-14 NMR study of the nitric acid/nitronium ion equilibrium in aqueous sulfuric-acid[J]. Journal of the American Chemical Society, 1983, 105(13): 4299-4302. |
28 | Wen Z H, Yang M, Zhao S N, et al. Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene[J]. Reaction Chemistry & Engineering, 2018, 3(3): 379-387. |
29 | Shen J N, Zhao Y C, Chen G W, et al. Investigation of nitration processes of iso-octanol with mixed acid in a microreactor[J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 412-418. |
30 | Song J, Cui Y J, Luo G S, et al. Kinetic study of o-nitrotoluene nitration in a homogeneously continuous microflow[J]. Reaction Chemistry & Engineering, 2022, 7(1): 111-122. |
31 | Zaldivar J M, Barcons C, Hernandez H, et al. Modelling and optimization of semibatch toluene mononitration with mixed acid from performance and safety viewpoints[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2517-2522. |
32 | Andreozzi R, Canterino M, Caprio V, et al. Salicylic acid nitration by means of nitric acid/acetic acid system: chemical and kinetic characterization[J]. Organic Process Research & Development, 2006, 10(6): 1199-1204. |
33 | Quadros P A, Oliveira N M C, Baptista C M S G. Continuous adiabatic industrial benzene nitration with mixed acid at a pilot plant scale[J]. Chemical Engineering Journal, 2005, 108(1/2): 1-11. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[4] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[5] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[6] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[7] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[8] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[9] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[10] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[11] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[12] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[13] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[14] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 438
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||