CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3586-3596.DOI: 10.11949/0438-1157.20220614
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Received:
2022-05-05
Revised:
2022-07-19
Online:
2022-09-06
Published:
2022-08-05
Contact:
Zhong XIN
通讯作者:
辛忠
作者简介:
戴文华(1994—),女,博士研究生,18317136869@163.com
基金资助:
CLC Number:
Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022, 73(8): 3586-3596.
戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596.
催化剂 | 比表面积①/(m2·g-1) | 孔容②/(cm3·g-1) | 平均孔径/ nm | 铜比表面积③/(m2·g-1) |
---|---|---|---|---|
Cu/ZrO2 | 43 | 0.17 | 15.5 | 2.02 |
Cu/0.1Si-ZrO2 | 162 | 0.43 | 10.7 | 6.31 |
Cu/0.2Si-ZrO2 | 188 | 0.37 | 7.8 | 8.89 |
Cu/0.3Si-ZrO2 | 252 | 0.30 | 4.8 | 6.19 |
Cu/0.4Si-ZrO2 | 272 | 0.41 | 7.2 | 6.12 |
Table 1 Physical and chemical properties of catalysts
催化剂 | 比表面积①/(m2·g-1) | 孔容②/(cm3·g-1) | 平均孔径/ nm | 铜比表面积③/(m2·g-1) |
---|---|---|---|---|
Cu/ZrO2 | 43 | 0.17 | 15.5 | 2.02 |
Cu/0.1Si-ZrO2 | 162 | 0.43 | 10.7 | 6.31 |
Cu/0.2Si-ZrO2 | 188 | 0.37 | 7.8 | 8.89 |
Cu/0.3Si-ZrO2 | 252 | 0.30 | 4.8 | 6.19 |
Cu/0.4Si-ZrO2 | 272 | 0.41 | 7.2 | 6.12 |
催化剂 | Cu物种/% | |
---|---|---|
CuO | Cu-Si-Zr氧化物 | |
Cu/ZrO2 | 71.7 | 28.3 |
Cu/0.1Si-ZrO2 | 59.4 | 40.6 |
Cu/0.2Si-ZrO2 | 35.1 | 64.9 |
Table 2 Cu valence of Cu/xSi-ZrO2 catalysts
催化剂 | Cu物种/% | |
---|---|---|
CuO | Cu-Si-Zr氧化物 | |
Cu/ZrO2 | 71.7 | 28.3 |
Cu/0.1Si-ZrO2 | 59.4 | 40.6 |
Cu/0.2Si-ZrO2 | 35.1 | 64.9 |
催化剂 | O物种/% | |
---|---|---|
晶格氧 | 缺陷氧 | |
Cu/ZrO2 | 77.7 | 22.3 |
Cu/0.1Si-ZrO2 | 70.9 | 29.1 |
Cu/0.2Si-ZrO2 | 59.3 | 40.7 |
Cu/0.3Si-ZrO2 | 60.6 | 39.4 |
Cu/0.4Si-ZrO2 | 64.8 | 35.2 |
Table 3 O valence of Cu/xSi-ZrO2 catalysts
催化剂 | O物种/% | |
---|---|---|
晶格氧 | 缺陷氧 | |
Cu/ZrO2 | 77.7 | 22.3 |
Cu/0.1Si-ZrO2 | 70.9 | 29.1 |
Cu/0.2Si-ZrO2 | 59.3 | 40.7 |
Cu/0.3Si-ZrO2 | 60.6 | 39.4 |
Cu/0.4Si-ZrO2 | 64.8 | 35.2 |
催化剂 | 总碱性位点/(µmol·g-1) | 弱碱性 位点/ (µmol·g-1) | 中强碱性 位点/ (µmol·g-1) | 中强碱密度/(µmol·m-2) |
---|---|---|---|---|
Cu/ZrO2 | 35.6 | 18.4 | 17.2 | 0.40 |
Cu/0.1Si-ZrO2 | 229.5 | 190.6 | 38.9 | 0.24 |
Cu/0.2Si-ZrO2 | 230.5 | 19.1 | 211.4 | 1.12 |
Cu/0.3Si-ZrO2 | 207.4 | 14.0 | 193.4 | 0.77 |
Cu/0.4Si-ZrO2 | 187.4 | 2.9 | 184.5 | 0.68 |
Table 4 The basic sites density of catalysts
催化剂 | 总碱性位点/(µmol·g-1) | 弱碱性 位点/ (µmol·g-1) | 中强碱性 位点/ (µmol·g-1) | 中强碱密度/(µmol·m-2) |
---|---|---|---|---|
Cu/ZrO2 | 35.6 | 18.4 | 17.2 | 0.40 |
Cu/0.1Si-ZrO2 | 229.5 | 190.6 | 38.9 | 0.24 |
Cu/0.2Si-ZrO2 | 230.5 | 19.1 | 211.4 | 1.12 |
Cu/0.3Si-ZrO2 | 207.4 | 14.0 | 193.4 | 0.77 |
Cu/0.4Si-ZrO2 | 187.4 | 2.9 | 184.5 | 0.68 |
1 | Zhong J W, Yang X F, Wu Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
2 | Dang S S, Yang H Y, Gao P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330: 61-75. |
3 | Ren M H, Zhang Y M, Wang X, et al. Catalytic hydrogenation of CO2 to methanol: a review[J]. Catalysts, 2022, 12(4): 403. |
4 | Bao J, Yang G H, Yoneyama Y, et al. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions[J]. ACS Catalysis, 2019, 9(4): 3026-3053. |
5 | Fang K G, Li D B, Lin M G, et al. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catalysis Today, 2009, 147(2): 133-138. |
6 | Li K Z, Chen J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861. |
7 | Scotti N, Bossola F, Zaccheria F, et al. Copper–zirconia catalysts: powerful multifunctional catalytic tools to approach sustainable processes[J]. Catalysts, 2020, 10(2): 168. |
8 | Sharma P, Sebastian J, Ghosh S, et al. Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts[J]. Catalysis Science & Technology, 2021, 11(5): 1665-1697. |
9 | Wang W W, Qu Z P, Song L X, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30. |
10 | Wang Z Q, Xu Z N, Zhang M J, et al. Insight into composition evolution in the synthesis of high-performance Cu/SiO2 catalysts for CO2 hydrogenation[J]. RSC Advances, 2016, 6(30): 25185-25190. |
11 | Wang Z Q, Xu Z N, Peng S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
12 | Xiao J, Mao D S, Guo X M, et al. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol[J]. Applied Surface Science, 2015, 338: 146-153. |
13 | Witoon T, Chalorngtham J, Dumrongbunditkul P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases[J]. Chemical Engineering Journal, 2016, 293: 327-336. |
14 | Marcos F C F, Cavalcanti F M, Petrolini D D, et al. Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: characterization and kinetics[J]. Chemical Engineering Journal, 2022, 427: 130947. |
15 | Numpilai T, Kidkhunthod P, Cheng C K, et al. CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: influence of calcination temperatures of ZrO2 support[J]. Catalysis Today, 2021, 375: 298-306. |
16 | Marcos F C F, Assaf J M, Giudici R, et al. Surface interaction of CO2/H2 mixture on mesoporous ZrO2: effect of crystalline polymorph phases[J]. Applied Surface Science, 2019, 496: 143671. |
17 | Tada S, Katagiri A, Kiyota K, et al. Cu species incorporated into amorphous ZrO2 with high activity and selectivity in CO2-to-methanol hydrogenation[J]. The Journal of Physical Chemistry C, 2018, 122(10): 5430-5442. |
18 | Yamamura T, Tada S, Kikuchi R, et al. Effect of Sm doping on CO2-to-methanol hydrogenation of Cu/amorphous-ZrO2 catalysts[J]. The Journal of Physical Chemistry C, 2021, 125(29): 15899-15909. |
19 | Oshima K, Nakajima S, Tada S, et al. Dimethyl ether synthesis from CO2-H2 mixture over Cu/amorphous-ZrO2 mixed with FER-type zeolite[J]. Journal of the Japan Petroleum Institute, 2020, 63(6): 388-393. |
20 | Zhang X P, Zhang Q D, Tsubaki N, et al. Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix[J]. Fuel, 2015, 147: 243-252. |
21 | Nagase H, Naito R, Tada S, et al. Ru nanoparticles supported on amorphous ZrO2 for CO2 methanation[J]. Catalysis Science & Technology, 2020, 10(14): 4522-4531. |
22 | Tada S, Kayamori S, Honma T, et al. Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation[J]. ACS Catalysis, 2018, 8(9): 7809-7819. |
23 | Tada S, Oshima K, Noda Y, et al. Effects of Cu precursor types on the catalytic activity of Cu/ZrO2 toward methanol synthesis via CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19434-19445. |
24 | Larmier K, Liao W C, Tada S, et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface[J]. Angewandte Chemie, 2017, 129(9): 2358-2363. |
25 | Jia M Y, Gao W G, Wang H, et al. Effect of silica promoter on performance of CuO-ZnO-ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Applied Mechanics and Materials, 2014, 556/557/558/559/560/561/562: 117-122. |
26 | Phongamwong T, Chantaprasertporn U, Witoon T, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents[J]. Chemical Engineering Journal, 2017, 316: 692-703. |
27 | Uchiyama S, Isobe T, Matsushita S, et al. Preparation of porous spherical ZrO2-SiO2 composite particles using templating and its solid acidity by H2SO4 treatment[J]. Journal of Materials Science, 2012, 47(1): 341-349. |
28 | Lam E, Larmier K, Wolf P, et al. Isolated Zr surface sites on silica promote hydrogenation of CO2 to CH3OH in supported Cu catalysts[J]. Journal of the American Chemical Society, 2018, 140(33): 10530-10535. |
29 | Lam E, Larmier K, Tada S, et al. Zr(Ⅳ) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2-CO2 hydrogenation catalysts[J]. Chinese Journal of Catalysis, 2019, 40(11): 1741-1748. |
30 | Pyen S, Hong E, Shin M, et al. Acidity of co-precipitated SiO2-ZrO2 mixed oxides in the acid-catalyzed dehydrations of iso-propanol and formic acid[J]. Molecular Catalysis, 2018, 448: 71-77. |
31 | Gu J, Xin Z, Tao M, et al. Effect of Si-modified zirconia on the properties of MoO3/Si-ZrO2 catalysts for sulfur-resistant CO methanation[J]. Applied Catalysis A: General, 2019, 575: 230-237. |
32 | Wang J J, Zeng J Y, Mo X T, et al. A measurement system for brake connectors in automobiles[J]. Assembly Automation, 2006, 26(3): 195-199. |
33 | Wang F, Liu Y W, Gan Y H, et al. Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas[J]. Fuel Processing Technology, 2013, 110: 190-196. |
34 | Karelovic A, Galdames G, Medina J C, et al. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles[J]. Journal of Catalysis, 2019, 369: 415-426. |
35 | Li Z Y, Hao H G, Lu J J, et al. Role of the Cu-ZrO2 interface in the hydrogenation of levulinic acid to γ-valerolactone[J]. Journal of Energy Chemistry, 2021, 61: 446-458. |
36 | Gervasini A, Manzoli M, Martra G, et al. Dependence of copper species on the nature of the support for dispersed CuO catalysts[J]. The Journal of Physical Chemistry. B, 2006, 110(15): 7851-7861. |
37 | Chen H, Cui H S, Lv Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: effects of ZnO morphology and oxygen vacancy[J]. Fuel, 2022, 314: 123035. |
38 | Ye K H, Li K S, Lu Y R, et al. An overview of advanced methods for the characterization of oxygen vacancies in materials[J]. TrAC Trends in Analytical Chemistry, 2019, 116: 102-108. |
39 | Zhuang G X, Chen Y W, Zhuang Z Y, et al. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design[J]. Science China Materials, 2020, 63(11): 2089-2118. |
40 | Singh R, Tripathi K, Pant K K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289. |
41 | Arena F, Italiano G, Barbera K, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350(1): 16-23. |
42 | Han F N, Liu H P, Cheng W Q, et al. Highly selective conversion of CO2 to methanol on the CuZnO–ZrO2 solid solution with the assistance of plasma[J]. RSC Advances, 2020, 10(56): 33620-33627. |
43 | Wang X H, Zhao J X, Li Y, et al. Effects of surface acid-base properties of ZrO2 on the direct synthesis of DMC from CO2 and methanol: a combined DFT and experimental study[J]. Chemical Engineering Science, 2021, 229: 116018. |
44 | Sohn J R, Jang H J. Characterization of ZrO2-SiO2 unmodified or modified with H2SO4 and acid catalysis[J]. Journal of Molecular Catalysis, 1991, 64(3): 349-360. |
45 | Gao P, Li F, Zhao N, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2013, 468: 442-452. |
46 | Chagas L H, Zonetti P C, Matheus C R V, et al. The role of the oxygen vacancies in the synthesis of 1,3-butadiene from ethanol[J]. ChemCatChem, 2019, 11(22): 5625-5632. |
47 | Stangeland K, Navarro H H, Huynh H L, et al. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO2 hydrogenation to methanol[J]. Chemical Engineering Science, 2021, 238: 116603. |
48 | 蔡中杰, 田盼, 黄忠亮, 等. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679. |
Cai Z J, Tian P, Huang Z L, et al. Preparation of Cu/ZnO nanocatalysts based on bio-templates for CO2 hydrogenation[J]. CIESC Journal, 2021, 72(7): 3668-3679. | |
49 | 刘洋洋, 孙超, Malhi H S, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662. |
Liu Y Y, Sun C, Singh M, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 545
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 742
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||