CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 105-115.DOI: 10.11949/0438-1157.20220994
• Reviews and monographs • Previous Articles Next Articles
Xianfu CHEN(), Dongyu WANG, Yiqun FAN, Weihong XING(), Xu QIAO
Received:
2022-07-14
Revised:
2022-11-09
Online:
2023-03-20
Published:
2023-01-05
Contact:
Weihong XING
通讯作者:
邢卫红
作者简介:
陈献富(1989—),男,博士,副教授,chenxianfu@njtech.edu.cn
基金资助:
CLC Number:
Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies[J]. CIESC Journal, 2023, 74(1): 105-115.
陈献富, 王冬雨, 范益群, 邢卫红, 乔旭. 基于3D打印的多孔陶瓷膜研究进展[J]. 化工学报, 2023, 74(1): 105-115.
Add to citation manager EndNote|Ris|BibTeX
成型方法 | 支撑体 | 膜层 | 孔径/μm | 水通量/(m3·m-2·h-1·MPa-1) | 文献 |
---|---|---|---|---|---|
3D打印(DLP) | 氧化铝 | 无 | 0.86 | 27.0 | [ |
0.47 | 8.0 | ||||
氧化铝 | 0.11 | 10.5 | |||
3D打印(IJP) | 黏土 | 无 | 2~8 | 14.0② | [ |
3D打印(IJP) | 黏土 | 无 | 7.8① | 5.0③ | [ |
3D打印(SLA) | 氧化铝 | 无 | 约0.01 | — | [ |
3D打印(DLP) | 氧化铝 | 氧化铝 | 0.18 | 1.5 | [ |
3D打印(DIW) | — | 氧化铝 | 0.07~0.09 | 42.0 | [ |
间接3D打印(SLA) | 碳化硅 | 无 | 1.3 | — | [ |
挤出 | 氧化铝 | 无 | 1.0 | 18.0 | [ |
挤出 | 粉煤灰 | 无 | 1.25 | 31.6 | [ |
0.3 | 4.6 | ||||
干压 | 粉煤灰 | 无 | 1.3 | 21 | [ |
冷冻铸造 | 波特兰水泥 | 无 | 2 | 18 | [ |
挤出 | 氧化铝 | 氧化铝 | 0.5 | 14.7 | [ |
碳化硅 | 碳化硅 | 0.5 | 49.8 | ||
挤出 | 氧化铝 | 氧化锆 | 0.5 | 10.5 | [ |
0.2 | 6.3 | ||||
0.05 | 3.6 | ||||
挤出 | 氧化铝 | 氧化铝 | 0.2 | 10.2 | [ |
Table 1 Comparison of the performances of ceramic membranes prepared via 3D printing and other methods
成型方法 | 支撑体 | 膜层 | 孔径/μm | 水通量/(m3·m-2·h-1·MPa-1) | 文献 |
---|---|---|---|---|---|
3D打印(DLP) | 氧化铝 | 无 | 0.86 | 27.0 | [ |
0.47 | 8.0 | ||||
氧化铝 | 0.11 | 10.5 | |||
3D打印(IJP) | 黏土 | 无 | 2~8 | 14.0② | [ |
3D打印(IJP) | 黏土 | 无 | 7.8① | 5.0③ | [ |
3D打印(SLA) | 氧化铝 | 无 | 约0.01 | — | [ |
3D打印(DLP) | 氧化铝 | 氧化铝 | 0.18 | 1.5 | [ |
3D打印(DIW) | — | 氧化铝 | 0.07~0.09 | 42.0 | [ |
间接3D打印(SLA) | 碳化硅 | 无 | 1.3 | — | [ |
挤出 | 氧化铝 | 无 | 1.0 | 18.0 | [ |
挤出 | 粉煤灰 | 无 | 1.25 | 31.6 | [ |
0.3 | 4.6 | ||||
干压 | 粉煤灰 | 无 | 1.3 | 21 | [ |
冷冻铸造 | 波特兰水泥 | 无 | 2 | 18 | [ |
挤出 | 氧化铝 | 氧化铝 | 0.5 | 14.7 | [ |
碳化硅 | 碳化硅 | 0.5 | 49.8 | ||
挤出 | 氧化铝 | 氧化锆 | 0.5 | 10.5 | [ |
0.2 | 6.3 | ||||
0.05 | 3.6 | ||||
挤出 | 氧化铝 | 氧化铝 | 0.2 | 10.2 | [ |
1 | Li J H, Pumera M. 3D printing of functional microrobots[J]. Chemical Society Reviews, 2021, 50(4): 2794-2838. |
2 | Jiménez M, Romero L, Domínguez I A, et al. Additive manufacturing technologies: an overview about 3D printing methods and future prospects[J]. Complexity, 2019, 2019: 9656938. |
3 | Lee J Y, An J, Chua C K. Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120-133. |
4 | Zhu J, Wu P W, Chao Y H, et al. Recent advances in 3D printing for catalytic applications[J]. Chemical Engineering Journal, 2022, 433: 134341. |
5 | Karakurt I, Lin L W. 3D printing technologies: techniques, materials, and post-processing[J]. Current Opinion in Chemical Engineering, 2020, 28: 134-143. |
6 | Kantaros A, Diegel O, Piromalis D, et al. 3D printing: making an innovative technology widely accessible through makerspaces and outsourced services[J]. Materials Today: Proceedings, 2022, 49: 2712-2723. |
7 | Berman B. 3-D printing: the new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162. |
8 | 卢秉恒. 增材制造技术: 现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23. |
Lu B H. Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19-23. | |
9 | Germaini M M, Belhabib S, Guessasma S, et al. Additive manufacturing of biomaterials for bone tissue engineering—a critical review of the state of the art and new concepts[J]. Progress in Materials Science, 2022, 130: 100963. |
10 | 史冬梅, 张雷, 李丹. 高性能膜材料国内外发展现状与趋势[J]. 科技中国, 2019(4): 4-7. |
Shi D M, Zhang L, Li D. Development status and trend of domestic and foreign high-performance membrane materials [J]. China Scitechnology Business, 2019(4): 4-7. | |
11 | Soo A, Ali S M, Shon H K. 3D printing for membrane desalination: challenges and future prospects[J]. Desalination, 2021, 520: 115366. |
12 | Tijing L D, Dizon J R C, Ibrahim I, et al. 3D printing for membrane separation, desalination and water treatment[J]. Applied Materials Today, 2020, 18: 100486. |
13 | Woldemariam M, Filimonov R, Purtonen T, et al. Mixing performance evaluation of additive manufactured milli-scale reactors[J]. Chemical Engineering Science, 2016, 152: 26-34. |
14 | Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-686. |
15 | Yuan S S, Strobbe D, Li X, et al. 3D printed chemically and mechanically robust membrane by selective laser sintering for separation of oil/water and immiscible organic mixtures[J]. Chemical Engineering Journal, 2020, 385: 123816. |
16 | Al-Shimmery A, Mazinani S, Ji J, et al. 3D printed composite membranes with enhanced anti-fouling behaviour[J]. Journal of Membrane Science, 2019, 574: 76-85. |
17 | Balogun H A, Sulaiman R, Marzouk S S, et al. 3D printing and surface imprinting technologies for water treatment: a review[J]. Journal of Water Process Engineering, 2019, 31: 100786. |
18 | Yanar N, Son M, Park H, et al. Toward greener membranes with 3D printing technology[J]. Environmental Engineering Research, 2021, 26(2): 200027. |
19 | 邢卫红, 范益群, 仲兆祥, 等. 面向过程工业的陶瓷膜制备与应用进展[J]. 化工学报, 2009, 60(11): 2679-2688. |
Xing W H, Fan Y Q, Zhong Z X, et al. Recent advances in process-engineering oriented preparation and application of ceramic membranes[J]. CIESC Journal, 2009, 60(11): 2679-2688. | |
20 | 范益群, 漆虹, 徐南平. 多孔陶瓷膜制备技术研究进展[J]. 化工学报, 2013, 64(1): 107-115. |
Fan Y Q, Qi H, Xu N P. Advance in preparation techniques of porous ceramic membranes[J]. CIESC Journal, 2013, 64(1): 107-115. | |
21 | Chen Z W, Li Z Y, Li J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. |
22 | Schlacher J, Lube T, Harrer W, et al. Strength of additive manufactured alumina[J]. Journal of the European Ceramic Society, 2020, 40(14): 4737-4745. |
23 | Wang J C, Dommati H, Hsieh S J. Review of additive manufacturing methods for high-performance ceramic materials[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 2627-2647. |
24 | Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. |
25 | Scheithauer U, Kerber F, Füssel A, et al. Alternative process routes to manufacture porous ceramics-opportunities and challenges[J]. Materials, 2019, 12(4): 663. |
26 | Dommati H, Ray S S, Wang J C, et al. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification[J]. RSC Advances, 2019, 9(29): 16869-16883. |
27 | Low Z X, Chua Y T, Ray B M, et al. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques[J]. Journal of Membrane Science, 2017, 523: 596-613. |
28 | Pan Z X, Wang D, Guo X, et al. High strength and microwave-absorbing polymer-derived SiCN honeycomb ceramic prepared by 3D printing[J]. Journal of the European Ceramic Society, 2022, 42(4): 1322-1331. |
29 | Man Y R, Ding G Q, Luo X D, et al. A review on porous ceramics with hierarchical pore structure by 3D printing-based combined route[J]. Journal of Asian Ceramic Societies, 2021, 9(4): 1377-1389. |
30 | Zhang F, Li Z A, Xu M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society, 2022, 42(8): 3351-3373. |
31 | Zeng Q F, Yang C H, Tang D Y, et al. Additive manufacturing alumina components with lattice structures by digital light processing technique[J]. Journal of Materials Science & Technology, 2019, 35(12): 2751-2755. |
32 | Jin Z P, Mei H, Yan Y K, et al. 3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation[J]. Journal of Materiomics, 2021, 7(1): 8-18. |
33 | Jiao C, Gu J J, Cao Y, et al. Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing[J]. Journal of the European Ceramic Society, 2020, 40(15): 6087-6094. |
34 | Zeng Y, Yan Y Z, Yan H F, et al. 3D printing of hydroxyapatite scaffolds withgood mechanical and biocompatible properties by digital light processing[J]. Journal of Materials Science, 2018, 53(9): 6291-6301. |
35 | Guo J, Zeng Y, Li P R, et al. Fine lattice structural titanium dioxide ceramic produced by DLP 3D printing[J]. Ceramics International, 2019, 45(17): 23007-23012. |
36 | Toombs J T, Luitz M, Cook C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312. |
37 | Minas C, Carnelli D, Tervoort E, et al. 3D printing of emulsions and foams into hierarchical porous ceramics[J]. Advanced Materials, 2016, 28(45): 9993-9999. |
38 | Muth J T, Dixon P G, Woish L, et al. Architected cellular ceramics with tailored stiffness via direct foam writing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1832-1837. |
39 | Sun X M, Zeng T, Zhou Y K, et al. 3D printing of porous SiC ceramics added with SiO2 hollow microspheres[J]. Ceramics International, 2020, 46(14): 22797-22804. |
40 | Choe G B, Kim G N, Lee H, et al. Novel camphene/photopolymer solution as pore-forming agent for photocuring-assisted additive manufacturing of porous ceramics[J]. Journal of the European Ceramic Society, 2021, 41(1): 655-662. |
41 | Jonhson W, Xu X, Bian K, et al. 3D-printed hierarchical ceramic architectures for ultrafast emulsion treatment and simultaneous oil-water filtration[J]. ACS Materials Letters, 2022, 4(4): 740-750. |
42 | Chen Z, Zhang D W, Peng E, et al. 3D-printed ceramic structures with in situ grown whiskers for effective oil/water separation[J]. Chemical Engineering Journal, 2019, 373: 1223-1232. |
43 | Hwa L C, Uday M B, Ahmad N, et al. Integration and fabrication of the cheap ceramic membrane through 3D printing technology[J]. Materials Today Communications, 2018, 15: 134-142. |
44 | He Z M, Shanmugasundaram T S, Singh G. Inkjet 3D printing of clay ceramics for water treatment[J]. Progress in Additive Manufacturing, 2018, 3(4): 215-219. |
45 | Ray S S, Dommati H, Wang J C, et al. Solvent based slurry stereolithography 3D printed hydrophilic ceramic membrane for ultrafiltration application[J]. Ceramics International, 2020, 46(8): 12480-12488. |
46 | Song S, Rong L W, Dong K J, et al. Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes[J]. Journal of Membrane Science, 2022, 642: 119920. |
47 | Zhang Z X, Gu Q L, Ng T C A, et al. Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment[J]. Separation and Purification Technology, 2022, 293: 121092. |
48 | Ng T C A, Lyu Z Y, Gu Q L, et al. Effect of gradient profile in ceramic membranes on filtration characteristics: implications for membrane development[J]. Journal of Membrane Science, 2020, 595: 117576. |
49 | Ye Y Y, Du Y, Hu T Y, et al. 3D printing of integrated ceramic membranes by the DLP method[J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9368-9377. |
50 | Chen T, Wang D Y, Chen X F, et al. Three-dimensional printing of high-flux ceramic membranes with an asymmetric structure via digital light processing[J]. Ceramics International, 2022, 48(1): 304-312. |
51 | Wang D Y, Chen T, Zeng Y, et al. Optimization of UV-curable alumina suspension for digital light processing of ceramic membranes[J]. Journal of Membrane Science, 2022, 643: 120066. |
52 | Ma J, Du B, He C, et al. Corrosion resistance properties of porous alumina-mullite ceramic membrane supports[J]. Advanced Engineering Materials, 2020, 22(7): 1901442. |
53 | Şahin A, Alp E, Eserci D, et al. Effective diffusion constant and adsorption constant of synthesized alumina, zirconia, and alumina-zirconia composite material[J]. Chemical Engineering Communications, 2017, 204(10): 1129-1142. |
54 | Lorente-Ayza M M, Mestre S, Sanz V, et al. On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes[J]. Ceramics International, 2016, 42(16): 18944-18954. |
55 | Zou D, Qiu M H, Chen X F, et al. One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process[J]. Journal of Membrane Science, 2017, 524: 141-150. |
56 | Wang D Y, Chen T, Zeng Y, et al. Rapid construction of ceramic microfiltration membranes with a gradient pore structure using UV-curable alumina suspension[J]. Ceramics International, 2022, 48(23): 34817-34827. |
57 | Majouli A, Tahiri S, Younssi S A, et al. Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters[J]. Ceramics International, 2012, 38(5): 4295-4303. |
58 | Geens J, der Bruggen B V, Vandecasteele C. Transport model for solvent permeation through nanofiltration membranes[J]. Separation and Purification Technology, 2006, 48(3): 255-263. |
59 | Zhang Y, Gao Y, Wang P, et al. SiC foam with a hollow skeleton and microporous strut wall used as a membrane contactor for the liquid-liquid extraction of Ce3+ and Pr3+ [J]. Journal of Membrane Science, 2021, 637: 119640. |
60 | Lyu Z Y, Ng T C A, Tran-Duc T, et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration[J]. Journal of Membrane Science, 2020, 606: 118138. |
61 | Qin G T, Lü X, Wei W, et al. Microfiltration of kiwifruit juice and fouling mechanism using fly-ash-based ceramic membranes[J]. Food and Bioproducts Processing, 2015, 96: 278-284. |
62 | Zou D, Fan W, Xu J R, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions[J]. Journal of Membrane Science, 2021, 621: 118954. |
63 | Abdullayev A, Kamm P H, Bekheet M F, et al. Fabrication and characterization of ice templated membrane supports from Portland cement[J]. Membranes, 2020, 10(5): 93. |
64 | 李秀秀, 魏逸彬, 谢子萱, 等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747. |
Li X X, Wei Y B, Xie Z X, et al. Hydrophobic modification of Al2O3 and SiC microfiltration membranes for oil-solid separation[J]. CIESC Journal, 2019, 70(7): 2737-2747. | |
65 | Zhang Q, Xu R, Xu P W, et al. Performance study of ZrO2 ceramic micro-filtration membranes used in pretreatment of DMF wastewater[J]. Desalination, 2014, 346: 1-8. |
66 | Jokić A, Pajčin I, Grahovac J, et al. Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane[J]. Chemical Engineering Research and Design, 2019, 150: 359-368. |
67 | Mazinani S, Al-Shimmery A, Chew Y M J, et al. 3D printed fouling-resistant composite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26373-26383. |
68 | Ng T C A, Lyu Z Y, Wang C S, et al. Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes[J]. Journal of Membrane Science, 2022, 645: 120125. |
69 | Gu Q L, Ng T C A, Bao Y P, et al. Developing better ceramic membranes for water and wastewater treatment: where microstructure integrates with chemistry and functionalities[J]. Chemical Engineering Journal, 2022, 428: 130456. |
70 | Xu N, Xing W H, Xu N P, et al. Application of turbulence promoters in ceramic membrane bioreactor used for municipal wastewater reclamation[J]. Journal of Membrane Science, 2002, 210(2): 307-313. |
71 | Wu Y, Hua C, Li W L, et al. Intensification of micromixing efficiency in a ceramic membrane reactor with turbulence promoter[J]. Journal of Membrane Science, 2009, 328(1/2): 219-227. |
72 | Tsai H Y, Huang A, soesanto J F, et al. 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal[J]. Journal of Membrane Science, 2019, 573: 647-656. |
73 | Ferreira F B, Ullmann G, Vieira L G M, et al. Hydrodynamic performance of 3D printed turbulence promoters in cross-flow ultrafiltrations of Psidium myrtoides extract[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108005. |
74 | Armbruster S, Cheong O, Lölsberg J, et al. Fouling mitigation in tubular membranes by 3D-printed turbulence promoters[J]. Journal of Membrane Science, 2018, 554: 156-163. |
75 | Troksa A L, Eshelman H V, Chandrasekaran S, et al. 3D-printed nanoporous ceramics: tunable feedstock for direct ink write and projection microstereolithography[J]. Materials & Design, 2021, 198: 109337. |
76 | Grossin D, Montón A, Navarrete-Segado P, et al. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): calcium phosphate, silicon carbide, zirconia, alumina, and their composites[J]. Open Ceramics, 2021, 5: 100073. |
77 | Wang X F, Schmidt F, Hanaor D, et al. Additive manufacturing of ceramics from preceramic polymers: a versatile stereolithographic approach assisted by thiol-ene click chemistry[J]. Additive Manufacturing, 2019, 27: 80-90. |
78 | Nunes S P, Culfaz-Emecen P Z, Ramon G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. |
79 | Zhang J, Amini N, Morton D A V, et al. 3D printing with particles as feedstock materials[J]. Advanced Powder Technology, 2021, 32(9): 3324-3345. |
80 | Lalegani Dezaki M, Serjouei A, Zolfagharian A, et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process[J]. Advanced Powder Materials, 2022, 1(4): 100054. |
81 | Oran D, Rodriques S G, Gao R, et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds[J]. Science, 2018, 362(6420): 1281-1285. |
82 | Liu G, Zhao Y, Wu G, et al. Origami and 4D printing of elastomer-derived ceramic structures[J]. Science Advances, 2018, 4(8): eaat0641. |
83 | Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials[J]. Materials Science and Engineering: R: Reports, 2021, 145: 100596. |
84 | Kuang X, Zhao Z A, Chen K J, et al. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing[J]. Macromolecular Rapid Communications, 2018, 39(7): e1700809. |
85 | 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323. |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China[J]. Acta Metallurgica Sinica, 2020, 56(10): 1313-1323. | |
86 | 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361. |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 2021, 57(11): 1343-1361. | |
87 | Erps T, Foshey M, Luković M K, et al. Accelerated discovery of 3D printing materials using data-driven multiobjective optimization[J]. Science Advances, 2021, 7(42): eabf7435. |
88 | Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 2020, 187: 108358. |
[1] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[2] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[3] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[4] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[5] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[6] | Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes [J]. CIESC Journal, 2022, 73(5): 2174-2182. |
[7] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
[8] | Da TENG, Tielin LI, Ang LI, Liansuo AN, Guoqing SHEN, Shiping ZHANG. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube [J]. CIESC Journal, 2020, 71(S1): 261-271. |
[9] | Xin ZHUO, Minghui QIU, Ping LUO. Mass transfer performance and resistance analysis of chemical absorption of NOx based on ceramic membrane contactor [J]. CIESC Journal, 2020, 71(8): 3652-3660. |
[10] | Xiuxiu LI, Yibin WEI, Zixuan XIE, Hong QI. Hydrophobic modification of Al2O3 and SiC microfiltration membranes for oil-solid separation [J]. CIESC Journal, 2019, 70(7): 2737-2747. |
[11] | Yu CAO, Le WANG, Chao JI, Yanzhao HUANG, Zhilei XUE, Jianming LU, Hong QI. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers [J]. CIESC Journal, 2019, 70(6): 2192-2201. |
[12] | Dongyan LI, Wei WEI, Feng HAN. Preparation and corrosion resistance of SiC membrane using for dust removal in high temperature [J]. CIESC Journal, 2019, 70(1): 336-344. |
[13] | CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584. |
[14] | REN Changzai, WANG Wenlong, LI Guolin, WANG Biao. Characteristics of solid-waste-based sulfoaluminate cementitious material being used in 3D printing and process simulation [J]. CIESC Journal, 2018, 69(7): 3270-3278. |
[15] | MENG Qingying, CAO Yu, HUANG Yanzhao, WANG Le, LI Li, NIU Shufeng, QI Hong. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes [J]. CIESC Journal, 2018, 69(6): 2519-2525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||