CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4267-4276.DOI: 10.11949/0438-1157.20230894
• Energy and environmental engineering • Previous Articles Next Articles
Ming PENG1(), Qiangfeng XIA2, Lixiang JIANG2, Li CHEN1(), Wenquan TAO1
Received:
2023-08-29
Revised:
2023-10-25
Online:
2023-12-22
Published:
2023-10-25
Contact:
Li CHEN
彭明1(), 夏强峰2, 蒋理想2, 陈黎1(), 陶文铨1
通讯作者:
陈黎
作者简介:
彭明(1991—),男,博士研究生,pengming@stu.xjtu.edu.cn
基金资助:
CLC Number:
Ming PENG, Qiangfeng XIA, Lixiang JIANG, Li CHEN, Wenquan TAO. Numerical simulation on the effect of cathode stoichiometric ratio and flow field arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2023, 74(10): 4267-4276.
彭明, 夏强峰, 蒋理想, 陈黎, 陶文铨. 阴极过量系数与流场布置对风冷燃料电池性能影响的数值模拟[J]. 化工学报, 2023, 74(10): 4267-4276.
Add to citation manager EndNote|Ris|BibTeX
几何结构 | 描述 | 数值/mm |
---|---|---|
阴极流道 | 宽度, WcGC | 1.2 |
深度, dcGC | 1.4 | |
阳极流道 | 宽度, WaGC | 0.9 |
深度, daGC | 0.6 | |
扩散层 | 厚度, δGDL | 0.25 |
微孔层 | 厚度, δMPL | 0.03 |
催化层 | 厚度, δCL | 0.03 |
质子交换膜 | 厚度, δMEM | 0.025 |
阴极肋 | 宽度, WcBP | 1.2 |
阳极肋 | 宽度, WaBP | 1.8 |
极板 | 长度, L | 108 |
宽度, W | 48.6 |
Table 1 Geometric structural parameters of air-cooled single PEM fuel cell
几何结构 | 描述 | 数值/mm |
---|---|---|
阴极流道 | 宽度, WcGC | 1.2 |
深度, dcGC | 1.4 | |
阳极流道 | 宽度, WaGC | 0.9 |
深度, daGC | 0.6 | |
扩散层 | 厚度, δGDL | 0.25 |
微孔层 | 厚度, δMPL | 0.03 |
催化层 | 厚度, δCL | 0.03 |
质子交换膜 | 厚度, δMEM | 0.025 |
阴极肋 | 宽度, WcBP | 1.2 |
阳极肋 | 宽度, WaBP | 1.8 |
极板 | 长度, L | 108 |
宽度, W | 48.6 |
1 | Boukoberine M N, Zhou Z B, Benbouzid M. A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects[J]. Applied Energy, 2019, 255: 113823. |
2 | Wen C Y, Lin Y S, Lu C H. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management[J]. Journal of Power Sources, 2009, 189(2): 1100-1105. |
3 | Min C H, Gao X M, Li F, et al. Thermal performance analyses of pulsating heat pipe for application in proton exchange member fuel cell[J]. Energy Conversion and Management, 2022, 259: 115566. |
4 | Sasmito A P, Birgersson E, Mujumdar A S. Numerical investigation of liquid water cooling for a proton exchange membrane fuel cell stack[J]. Heat Transfer Engineering, 2011, 32(2): 151-167. |
5 | Bargal M H S, Abdelkareem M A A, Tao Q, et al. Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey[J]. Alexandria Engineering Journal, 2020, 59(2): 635-655. |
6 | Faghri A, Guo Z. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling[J]. International Journal of Heat and Mass Transfer, 2005, 48(19/20): 3891-3920. |
7 | Chen Q, Zhang G B, Zhang X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
8 | Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715. |
9 | Al-Zeyoudi H, Sasmito A P, Shamim T. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: case study of United Arab Emirates[J]. Energy Conversion and Management, 2015, 105: 798-809. |
10 | Dhathathreyan K S, Rajalakshmi N, Jayakumar K, et al. Forced air-breathing PEMFC stacks[J]. International Journal of Electrochemistry, 2012, 2012: 1-7. |
11 | De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
12 | Zhao C, Xing S, Liu W, et al. Air and H2 feed systems optimization for open-cathode proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11940-11951. |
13 | 朱星光, 贾秋红, 陈唐龙, 等. 质子交换膜燃料电池阴极风扇系统实验研究[J]. 中国电机工程学报, 2013, 33(11): 47-53, 9. |
Zhu X G, Jia Q H, Chen T L, et al. Experimental study on characteristics of cathode fan systems of proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2013, 33(11): 47-53, 9. | |
14 | Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
15 | Zhao C, Xing S, Liu W, et al. Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell[J]. Renewable Energy, 2021, 178: 1250-1260. |
16 | 魏琳, 郭剑, 廖梓豪, 等. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
Wei L, Guo J, Liao Z H, et al. Influence of air flow rate on the performance of air-cooled hydrogen fuel cell stack[J]. CIESC Journal, 2022, 73(7): 3222-3231. | |
17 | Wilberforce T, El Hassan Z, Ogungbemi E, et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 236-260. |
18 | Li X G, Sabir I. Review of bipolar plates in PEM fuel cells: flow-field designs[J]. International Journal of Hydrogen Energy, 2005, 30(4): 359-371. |
19 | 赵强, 郭航, 叶芳, 等. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963. |
Zhao Q, Guo H, Ye F, et al. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963. | |
20 | Zhang G B, Wu L Z, Tongsh C, et al. Structure design for ultrahigh power density proton exchange membrane fuel cell[J]. Small Methods, 2023, 7(3): 2201537. |
21 | 潘伟童. 质子交换膜燃料电池放大效应及流动均布与水管理过程研究[D]. 上海: 华东理工大学, 2022. |
Pan W T. Study on scale-up effects and flow distribution and water management processes of proton exchange membrane fuel cells[D].Shanghai: East China University of Science and Technology, 2022. | |
22 | Min C H, He J, Wang K, et al. A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields[J]. Energy Conversion and Management, 2019, 180: 1217-1224. |
23 | Geng Q T, Han Y R, Li B Z, et al. Optimal and modeling study of air-cooled proton exchange membrane fuel cell with various length-width ratio and numbers[J]. International Communications in Heat and Mass Transfer, 2023, 142: 106668. |
24 | Atyabi S A, Afshari E, Shakarami N. Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels[J]. Energy, 2023, 263: 125507. |
25 | Peng M, Chen L, Zhang R Y, et al. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel[J]. Electrochimica Acta, 2022, 412: 140154. |
26 | Zhang G B, Qu Z G, Wang Y. Full-scale three-dimensional simulation of air-cooled proton exchange membrane fuel cell stack: temperature spatial variation and comprehensive validation[J]. Energy Conversion and Management, 2022, 270: 116211. |
27 | Mu Y T, He P, Ding J, et al. Modeling of the operation conditions on the gas purging performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11788-11802. |
28 | 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
Peng M, Xia Q F, Jiang L X, et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637. | |
29 | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. | |
30 | Yu X X, Chang H W, Zhao J J, et al. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell[J]. Energy Reports, 2022, 8: 4443-4452. |
31 | Hu M, Zhao R, Pan R, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell ( Ⅱ ) : Parameter sensitivity analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18589-18603. |
32 | Shahsavari S, Desouza A, Bahrami M, et al. Thermal analysis of air-cooled PEM fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18261-18271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||