CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4397-4418.DOI: 10.11949/0438-1157.20230636
• Reviews and monographs • Previous Articles Next Articles
Cuiman TANG1(), Jiaqi LIU1(), Wei YANG1,2(), Zhong SUN1, Haonan ZHANG1, Bingbing WANG1, Xiaohui XU1()
Received:
2023-06-27
Revised:
2023-10-16
Online:
2024-01-22
Published:
2023-11-25
Contact:
Wei YANG, Xiaohui XU
唐翠曼1(), 刘佳琦1(), 杨威1,2(), 孙钟1, 仉昊楠1, 王兵兵1, 徐小惠1()
通讯作者:
杨威,徐小惠
作者简介:
唐翠曼(1996—),女,硕士研究生,1131559980@qq.com基金资助:
CLC Number:
Cuiman TANG, Jiaqi LIU, Wei YANG, Zhong SUN, Haonan ZHANG, Bingbing WANG, Xiaohui XU. Progress in the application of covalent organic frameworks in cross-coupling reactions[J]. CIESC Journal, 2023, 74(11): 4397-4418.
唐翠曼, 刘佳琦, 杨威, 孙钟, 仉昊楠, 王兵兵, 徐小惠. 共价有机骨架在交叉偶联反应中的应用进展[J]. 化工学报, 2023, 74(11): 4397-4418.
Add to citation manager EndNote|Ris|BibTeX
COFs催化剂 | 偶联反应 | 成键方式 | 循环次数 | 图示 | 文献 |
---|---|---|---|---|---|
Pd/COF-LZU1 | Suzuki-Miyaura | C—C | 4 | 2 | [ |
Pd/H2P-Bph-COF | Suzuki-Miyaura | C—C | 4 | 3 | [ |
Pd(OAc)2@COF-300 | Suzuki-Miyaura | C—C | 5 | 4 | [ |
Heck | — | ||||
Sonogashira | — | ||||
Pd(Ⅱ)@TAT-DHBD | Suzuki-Miyaura | C—C | 3 | 6 | [ |
Pd(0)@TAT-DHBD | |||||
Pd(Ⅱ)@TAT-TFP | |||||
Pd(0)@TAT-TFP | |||||
Pd@COF-NHC | Suzuki-Miyaura | C—C | 8 | 7 | [ |
Pd NPs@Phos-COF-1 | Suzuki-Miyaura | C—C | 5 | 8 | [ |
PdAu NPs@Phos-COF-1 | tandem cross-coupling and hydride reduction of 1-bromo-4-nitrobenzene | C—C | — | 8 | [ |
HP-TpAzo@Pd | Suzuki-Miyaura | C—C | 5 | 9 | [ |
Pd NPs@TTT-COF | Suzuki-Miyaura | C—C | 4 | 10 | [ |
Stille | C—C | — | |||
Heck | C—C | — | |||
Sonogashira | C—C | — | |||
Pd@TPM-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 11 | [ |
Pd(Ⅱ)@SP-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 12 | [ |
NiCl@RIO-12 | Suzuki-Miyaura | C—C | 3 | 13 | [ |
Pd/COF-SMC2 | Suzuki-Miyaura | C—C | 3 | 14 | [ |
Pd@Phen-COF | Suzuki-Miyaura | C—C | 5 | 15 | [ |
Heck | C—C | ||||
Pd(0)@TpPa-1 | Heck | C—C | 4 | 16 | [ |
Sonogashira | C—C | 4 | |||
one-pot sequential Heck/Sonogashira coupling reactions | C—C | — | |||
Pd(0)-trzn-COF | Heck | C—C | 6 | 17 | [ |
Pd(Ⅱ)@Bpy-COF | Heck | C—C | 4 | 18 | [ |
Mn/Pd@Py-2, 2′-BPyPh COF | Heck-epoxidation tandem reaction | C—C | 2 | 19 | [ |
Pd/COF-BTDH | Heck | C—C | 9 | 21 | [ |
Cu@IISERP-COF9 | Glaser-Hay | C—N | 5 | 22 | [ |
Cu@MCIP-1 | Chan-Lam | C—N | 4 | 23 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 24 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 25 | [ |
sp2c-COFdpy-Ni | C—O cross-coupling reaction | C—O | 4 | 26 | [ |
Table 1 COFs catalyzed cross-coupling reactions
COFs催化剂 | 偶联反应 | 成键方式 | 循环次数 | 图示 | 文献 |
---|---|---|---|---|---|
Pd/COF-LZU1 | Suzuki-Miyaura | C—C | 4 | 2 | [ |
Pd/H2P-Bph-COF | Suzuki-Miyaura | C—C | 4 | 3 | [ |
Pd(OAc)2@COF-300 | Suzuki-Miyaura | C—C | 5 | 4 | [ |
Heck | — | ||||
Sonogashira | — | ||||
Pd(Ⅱ)@TAT-DHBD | Suzuki-Miyaura | C—C | 3 | 6 | [ |
Pd(0)@TAT-DHBD | |||||
Pd(Ⅱ)@TAT-TFP | |||||
Pd(0)@TAT-TFP | |||||
Pd@COF-NHC | Suzuki-Miyaura | C—C | 8 | 7 | [ |
Pd NPs@Phos-COF-1 | Suzuki-Miyaura | C—C | 5 | 8 | [ |
PdAu NPs@Phos-COF-1 | tandem cross-coupling and hydride reduction of 1-bromo-4-nitrobenzene | C—C | — | 8 | [ |
HP-TpAzo@Pd | Suzuki-Miyaura | C—C | 5 | 9 | [ |
Pd NPs@TTT-COF | Suzuki-Miyaura | C—C | 4 | 10 | [ |
Stille | C—C | — | |||
Heck | C—C | — | |||
Sonogashira | C—C | — | |||
Pd@TPM-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 11 | [ |
Pd(Ⅱ)@SP-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 12 | [ |
NiCl@RIO-12 | Suzuki-Miyaura | C—C | 3 | 13 | [ |
Pd/COF-SMC2 | Suzuki-Miyaura | C—C | 3 | 14 | [ |
Pd@Phen-COF | Suzuki-Miyaura | C—C | 5 | 15 | [ |
Heck | C—C | ||||
Pd(0)@TpPa-1 | Heck | C—C | 4 | 16 | [ |
Sonogashira | C—C | 4 | |||
one-pot sequential Heck/Sonogashira coupling reactions | C—C | — | |||
Pd(0)-trzn-COF | Heck | C—C | 6 | 17 | [ |
Pd(Ⅱ)@Bpy-COF | Heck | C—C | 4 | 18 | [ |
Mn/Pd@Py-2, 2′-BPyPh COF | Heck-epoxidation tandem reaction | C—C | 2 | 19 | [ |
Pd/COF-BTDH | Heck | C—C | 9 | 21 | [ |
Cu@IISERP-COF9 | Glaser-Hay | C—N | 5 | 22 | [ |
Cu@MCIP-1 | Chan-Lam | C—N | 4 | 23 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 24 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 25 | [ |
sp2c-COFdpy-Ni | C—O cross-coupling reaction | C—O | 4 | 26 | [ |
1 | Kadu B S. Suzuki-Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis[J]. Catalysis Science & Technology, 2021, 11(4): 1186-1221. |
2 | Chen J, Li J, Dong Z. A review on the latest progress of Chan-Lam coupling reaction[J]. Advanced Synthesis & Catalysis, 2020, 362(16): 3311-3331. |
3 | Fui C J, Sarjadi M S, Sarkar S M, et al. Recent advancement of ullmann condensation coupling reaction in the formation of aryl-oxygen (C—O) bonding by copper-mediated catalyst[J]. Catalysts, 2020, 10(10): 1103-1153. |
4 | Torborg C, Beller M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries[J]. Advanced Synthesis & Catalysis, 2009, 351(18): 3027-3043. |
5 | Corona S P, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2-advanced breast cancer[J]. Drug Design, Development and Therapy, 2018, 12: 321-330. |
6 | Labelle M, Belley M, Gareau Y, et al. Discovery of MK-0476, a potent and orally active leukotriene D4 receptor antagonist devoid of peroxisomal enxyme induction[J]. Bioorganic & Medicinal Chemistry Letters, 1995, 5(3): 283-288. |
7 | Capi M, de Andrés F, Lionetto L, et al. Lasmiditan for the treatment of migraine[J]. Expert Opinion on Investigational Drugs, 2017, 26(2): 227-234. |
8 | Echavarren J, Gall M A Y, Haertsch A, et al. Active template rotaxane synthesis through the Ni-catalyzed cross-coupling of alkylzinc reagents with redox-active esters[J]. Chemical Science, 2019, 10(30): 7269-7273. |
9 | Wurtz A. Ueber eine neue klasse organischer radicale[J]. Justus Liebigs Annalen Der Chemie, 1855, 96(3): 364-375. |
10 | Cassar L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes[J]. Journal of Organometallic Chemistry, 1975, 93(2): 253-257. |
11 | Heck R F. Acylation, methylation, and carboxyalkylation of olefins by group Ⅷ metal derivatives [J]. Journal of the American Chemical Society, 1968, 90(20): 5518-5526. |
12 | Suzuki A. Organoborates in new synthetic reactions[J]. Accounts of Chemical Research, 1982, 15(6): 178-184. |
13 | Devendar P, Qu R Y, Kang W M, et al. Palladium-catalyzed cross-coupling reactions: a powerful tool for the synthesis of agrochemicals[J]. Journal of Agricultural and Food Chemistry, 2018, 66(34): 8914-8934. |
14 | Dawson D D, Oswald V F, Borovik A S, et al. Identification of the active catalyst for nickel-catalyzed stereospecific kumada coupling reactions of ethers[J]. Chemistry-A European Journal, 2020, 26(14): 3044-3048. |
15 | Rout L, Punniyamurthy T. Recent advances in transition-metal-mediated Csp2-B and Csp2-P cross-coupling reactions[J]. Coordination Chemistry Reviews, 2021, 431: 213675. |
16 | Ma X H, Murray B, Biscoe M R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles[J]. Nature Reviews Chemistry, 2020, 4(11): 584-599. |
17 | Till N A, Oh S, MacMillan D W C, et al. The application of pulse radiolysis to the study of Ni(Ⅰ) intermediates in Ni-catalyzed cross-coupling reactions[J]. Journal of the American Chemical Society, 2021, 143(25): 9332-9337. |
18 | Chen J K, Yin C L, Zhou J, et al. Ir(Ⅲ)-catalyzed and Ag2O-promoted C—H/C—H cross-coupling/intramolecular cyclization of ketene dithioacetals with benzothiophene[J]. Advanced Synthesis & Catalysis, 2021, 363(18): 4360-4364. |
19 | Polshettiwar V, Len C, Fihri A. Silica-supported palladium: sustainable catalysts for cross-coupling reactions[J]. Coordination Chemistry Reviews, 2009, 253(21/22): 2599-2626. |
20 | 高婷婷, 姬广斌. Pd/CMK-3的合成及其在Suzuki-Miyaura碳-碳偶联反应中的应用[J]. 化工学报, 2011, 62(2): 515-519. |
Gao T T, Ji G B. Synthesis of Pd/CMK-3 and its application in Suzuki-Miyaura carbon-carbon coupling reaction[J]. CIESC Journal, 2011, 62(2): 515-519. | |
21 | Dewan A, Sarmah M, Bharali P, et al. Pd nanoparticles-loaded honeycomb-structured bio-nanocellulose as a heterogeneous catalyst for heteroaryl cross-coupling reaction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 954-966. |
22 | Xiang Z H, Cao D P. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718. |
23 | Li H L, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
24 | Zhou H C, Long J, Yaghi O. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
25 | Dhakshinamoorthy A, Asiri A M, Garcia H. Metal-organic frameworks catalyzed C—C and C—heteroatom coupling reactions[J]. Chemical Society Reviews, 2015, 44(7): 1922-1947. |
26 | Hong K, Sajjadi M, Suh J M, et al. Palladium nanoparticles on assorted nanostructured supports: applications for suzuki, heck, and sonogashira cross-coupling reactions[J]. ACS Applied Nano Materials, 2020, 3(3): 2070-2103. |
27 | Sadeghi S, Jafarzadeh M, Abbasi A R, et al. Incorporation of CuO NPs into modified UiO-66-NH2 metal-organic frameworks (MOFs) with melamine for catalytic C—O coupling in the Ullmann condensation[J]. New Journal of Chemistry, 2017, 41(20): 12014-12027. |
28 | He T, Kong X J, Zhou J A, et al. A practice of reticular chemistry: construction of a robust mesoporous palladium metal-organic framework via metal metathesis[J]. Journal of the American Chemical Society, 2021, 143(26): 9901-9911. |
29 | Rodríguez-San-Miguel D, Montoro C, Zamora F. Covalent organic framework nanosheets: preparation, properties and applications[J]. Chemical Society Reviews, 2020, 49(8): 2291-2302. |
30 | Zeng Y F, Zou R Y, Luo Z, et al. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions[J]. Journal of the American Chemical Society, 2015, 137(3): 1020-1023. |
31 | Guan Q, Zhou L L, Dong Y B. Metalated covalent organic frameworks: from synthetic strategies to diverse applications[J]. Chemical Society Reviews, 2022, 51(15): 6307-6416. |
32 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
33 | Sahoo R, Mondal S, Pal S C, et al. Covalent-organic frameworks (COFs) as proton conductors[J]. Advanced Energy Materials, 2021, 11(39): 2102300. |
34 | Haldar S, Chakraborty D, Roy B, et al. Anthracene-resorcinol derived covalent organic framework as flexible white light emitter[J]. Journal of the American Chemical Society, 2018, 140(41): 13367-13374. |
35 | Liang L, Chen J, Chen X W, et al. In situ synthesis of a GO/COFs composite with enhanced adsorption performance for organic pollutants in water[J]. Environmental Science: Nano, 2022, 9(2): 554-567. |
36 | Emmerling S T, Maschita J, Lotsch B V. Nitric oxide (NO) as a reagent for topochemical framework transformation and controlled NO release in covalent organic frameworks[J]. Journal of the American Chemical Society, 2023, 145(14): 7800-7809. |
37 | Xu Y N, Wu T T, Cui Z W, et al. In situ growth of COFs within wood microchannels for wastewater treatment and oil-water separation[J]. Separation and Purification Technology, 2022, 303: 122275. |
38 | Traxler M, Gisbertz S, Pachfule P, et al. Acridine-functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C—N cross-coupling[J]. Angewandte Chemie International Edition, 2022, 61(21): e202117738. |
39 | Zong H, Liu W C, Li M S, et al. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10738-10746. |
40 | Song S H, Wang D D, Zhao K, et al. Donor-acceptor structured photothermal COFs for enhanced starvation therapy[J]. Chemical Engineering Journal, 2022, 442: 135963. |
41 | Zhao X J, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews, 2021, 50(12): 6871-6913. |
42 | Wang X R, Han X, Zhang J E, et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis[J]. Journal of the American Chemical Society, 2016, 138(38): 12332-12335. |
43 | Diercks C S, Yaghi O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
44 | Ding S Y, Gao J A, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49): 19816-19822. |
45 | Hou Y X, Zhang X M, Sun J S, et al. Good Suzuki-coupling reaction performance of Pd immobilized at the metal-free porphyrin-based covalent organic framework[J]. Microporous and Mesoporous Materials, 2015, 214: 108-114. |
46 | Gonçalves R S B, de Oliveira A B V, Sindra H C, et al. Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAc)2@COF-300 in cross-coupling reactions[J]. ChemCatChem, 2016, 8(4): 743-750. |
47 | Kaleeswaran D, Antony R, Sharma A, et al. Catalysis and CO2 capture by palladium-incorporated covalent organic frameworks[J]. ChemPlusChem, 2017, 82(10): 1253-1265. |
48 | Yang J J, Wu Y Y, Wu X W, et al. An N-heterocyclic carbene-functionalised covalent organic framework with atomically dispersed palladium for coupling reactions under mild conditions[J]. Green Chemistry, 2019, 21(19): 5267-5273. |
49 | Tao R, Shen X R, Hu Y M, et al. Broad-scope ultrafine nanoparticles: phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles[J]. Small, 2020, 16(8): e1906005 |
50 | Qiu J K, Wang H Y, Zhao Y L, et al. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C—C coupling reactions[J]. Green Chemistry, 2020, 22(8): 2605-2612. |
51 | Yang Y L, Niu H Y, Zhao W J, et al. Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C—C cross-coupling reactions[J]. RSC Advances, 2020, 10(49): 29402-29407. |
52 | Sun Q Z, Wu C Y, Pan Q Y, et al. Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst[J]. ChemNanoMat, 2021, 7(1): 95-99. |
53 | Liu Y M, Wu C Y, Sun Q Z, et al. Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst[J]. CCS Chemistry, 2021, 3(4): 2418-2427. |
54 | Maia R A, Berg F, Ritleng V, et al. Design, synthesis and characterization of nickel-functionalized covalent organic framework NiCl@RIO-12 for heterogeneous suzuki-miyaura catalysis[J]. Chemistry-A European Journal, 2020, 26(9): 2051-2059. |
55 | Liu J G, Zhan H, Wang N, et al. Palladium nanoparticles on covalent organic framework supports as catalysts for Suzuki-Miyaura cross-coupling reactions[J]. ACS Applied Nano Materials, 2021, 4(6): 6239-6249. |
56 | López-Magano A, Mas-Ballesté R, Alemán J. Predesigned covalent organic frameworks as effective platforms for Pd(Ⅱ) coordination enabling cross-coupling reactions under sustainable conditions[J]. Advanced Sustainable Systems, 2022, 6(3): 2100409. |
57 | Pachfule P, Panda M K, Kandambeth S, et al. Multifunctional and robust covalent organic framework-nanoparticle hybrids[J]. Journal of Materials Chemistry A, 2014, 2(21): 7944-7952. |
58 | Mullangi D, Nandi S, Shalini S, et al. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C—C couplings and CO oxidation[J]. Scientific Reports, 2015, 5: 10876. |
59 | Zhang J Q, Peng Y S, Leng W G, et al. Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis[J]. Chinese Journal of Catalysis, 2016, 37(4): 468-475. |
60 | Leng W G, Ge R L, Dong B, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions[J]. RSC Advances, 2016, 6(44): 37403-37406. |
61 | Han J Y, Sun X W, Wang X, et al. Covalent organic framework as a heterogeneous ligand for the regioselective oxidative heck reaction[J]. Organic Letters, 2020, 22(4): 1480-1484. |
62 | Chakraborty D, Nandi S, Mullangi D, et al. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via glaser-hay coupling[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15670-15679. |
63 | Puthiaraj P, Pitchumani K. Triazine-based mesoporous covalent imine polymers as solid supports for copper-mediated Chan-Lam cross-coupling N-arylation reactions[J]. Chemistry-A European Journal, 2014, 20(28): 8761-8770. |
64 | Han Y, Zhang M, Zhang Y Q, et al. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines[J]. Green Chemistry, 2018, 20(21): 4891-4900. |
65 | 刘恒烁, 遇治权, 孙志超, 等. COF固载铜盐催化苯硼酸与咪唑的Chan-Lam偶联反应[J]. 高等学校化学学报, 2020, 41(5): 1091-1100. |
Liu H S, Yu Z Q, Sun Z C, et al. Copper salt anchored on a covalent organic framework as heterogeneous catalyst for Chan-Lam coupling reaction[J]. Chemical Journal of Chinese Universities, 2020, 41(5): 1091-1100. | |
66 | Dong W B, Yang Y, Xiang Y G, et al. A highly stable all-in-one photocatalyst for aryl etherification: the NiⅡ embedded covalent organic framework[J]. Green Chemistry, 2021, 23(16): 5797-5805. |
67 | Singh G, Singh P A, Sen A K, et al. Synthesis and characterization of some bivalent metal complexes of schiff bases derived from as-triazine[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2002, 32(1): 171-187. |
68 | Lu S L, Hu Y M, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications[J]. Journal of the American Chemical Society, 2017, 139(47): 17082-17088. |
69 | Ma H C, Kan J L, Chen G J, et al. Pd NPs-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis[J]. Chemistry of Materials, 2017, 29(15): 6518-6524. |
70 | Duan Z L, Li W, Lei A W. Nickel-catalyzed reductive cross-coupling of aryl bromides with alkyl bromides: Et3N as the terminal reductant[J]. Organic Letters, 2016, 18(16): 4012-4015. |
71 | Paul A, Smith M D, Vannucci A K. Photoredox-assisted reductive cross-coupling: mechanistic insight into catalytic aryl-alkyl cross-couplings[J]. The Journal of Organic Chemistry, 2017, 82(4): 1996-2003. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[14] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||