CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 653-665.DOI: 10.11949/0438-1157.20221560
• Thermodynamics • Previous Articles Next Articles
Jiaqing ZHANG1(), Rongpei JIANG2, Weikang SHI1, Boxiang WU1, Chao YANG3, Zhaohui LIU1()
Received:
2022-12-02
Revised:
2023-01-16
Online:
2023-03-21
Published:
2023-02-05
Contact:
Zhaohui LIU
张家庆1(), 蒋榕培2, 史伟康1, 武博翔1, 杨超3, 刘朝晖1()
通讯作者:
刘朝晖
作者简介:
张家庆(1998—),男,硕士研究生,jq_zhang@stu.xjtu.edu.cn
CLC Number:
Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665.
张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665.
Add to citation manager EndNote|Ris|BibTeX
发表年份 | 煤油种类 | 工况 | 测试点数 | 方法 | 不确定度 | 文献 |
---|---|---|---|---|---|---|
2009 | RP-1,RP-2 | 293~373 K 0.1 MPa | 18 | 开放式重力型毛细管黏度计 | — | [ |
2013 | RP-1,RP-2 | 263~323 K 0.083 MPa | 46 | 商业旋转同心圆筒式黏度计 | 0.28%~3.90% | [ |
2013 | RP-2 | 270~425 K 0.1~137 MPa | 94 | 振荡活塞黏度计 | 5% | [ |
2019 | RP-1 | 301~744 K 0.1~60 MPa | 74 | 毛细管法 | 2% | [ |
2020 | RP-2 | 298~573 K 5~100 MPa | 99 | 体积可变的滚球黏度计 | 4% | [ |
2022 | 煤基火箭煤油 | 299.6~678.8 K 0.3~40.4 MPa | 130 | 高温高压双毛细管黏度计 | 0.83%~4.91% | [ |
Table 1 Research progress on viscosity measurement of rocket kerosene
发表年份 | 煤油种类 | 工况 | 测试点数 | 方法 | 不确定度 | 文献 |
---|---|---|---|---|---|---|
2009 | RP-1,RP-2 | 293~373 K 0.1 MPa | 18 | 开放式重力型毛细管黏度计 | — | [ |
2013 | RP-1,RP-2 | 263~323 K 0.083 MPa | 46 | 商业旋转同心圆筒式黏度计 | 0.28%~3.90% | [ |
2013 | RP-2 | 270~425 K 0.1~137 MPa | 94 | 振荡活塞黏度计 | 5% | [ |
2019 | RP-1 | 301~744 K 0.1~60 MPa | 74 | 毛细管法 | 2% | [ |
2020 | RP-2 | 298~573 K 5~100 MPa | 99 | 体积可变的滚球黏度计 | 4% | [ |
2022 | 煤基火箭煤油 | 299.6~678.8 K 0.3~40.4 MPa | 130 | 高温高压双毛细管黏度计 | 0.83%~4.91% | [ |
名称 | 来源 | 组分测试 | 平均分子式 | 平均分子量/(g/mol) | 临界温度/K | 临界压力/MPa |
---|---|---|---|---|---|---|
煤基煤油 | 西安航天动力试验技术研究所 | ASTM D2425① | C11.21H21.21② | 155.73 | 687.74 | 2.263 |
石油基煤油 | 北京航天试验技术研究所 | ASTM D2425 | C12.06H22.84② | 167.56 | 695.50 | 2.175 |
Table 2 The fuel sample used for viscosity measurement
名称 | 来源 | 组分测试 | 平均分子式 | 平均分子量/(g/mol) | 临界温度/K | 临界压力/MPa |
---|---|---|---|---|---|---|
煤基煤油 | 西安航天动力试验技术研究所 | ASTM D2425① | C11.21H21.21② | 155.73 | 687.74 | 2.263 |
石油基煤油 | 北京航天试验技术研究所 | ASTM D2425 | C12.06H22.84② | 167.56 | 695.50 | 2.175 |
系数 | 煤基煤油 | 石油基煤油 |
---|---|---|
Z0 | 1.19071×102 | 2.25508×103 |
Z1 | -5.54439×103 | -9.65659×104 |
Z2 | 2.12645×10 | 3.90518×102 |
Z3 | 1.56939×10-2 | 3.95265×10-2 |
E0 | -1.00333×10-1 | 7.14612×10-4 |
E1 | 1.81220×10 | -2.01337 |
E2 | 3.68335×10-2 | -3.75306×10-3 |
A | -4.84325 | 3.61364 |
B | -2.69211×10-10 | 6.97318×10-11 |
AAD/% | 2.45 | 1.40 |
MAD/% | 8.67 | 5.82 |
Bias/% | -0.02 | 0.07 |
Table 3 Fitting parameters of the model and deviations from experimental values of rocket kerosene at 293—673 K and 0.3—40 MPa
系数 | 煤基煤油 | 石油基煤油 |
---|---|---|
Z0 | 1.19071×102 | 2.25508×103 |
Z1 | -5.54439×103 | -9.65659×104 |
Z2 | 2.12645×10 | 3.90518×102 |
Z3 | 1.56939×10-2 | 3.95265×10-2 |
E0 | -1.00333×10-1 | 7.14612×10-4 |
E1 | 1.81220×10 | -2.01337 |
E2 | 3.68335×10-2 | -3.75306×10-3 |
A | -4.84325 | 3.61364 |
B | -2.69211×10-10 | 6.97318×10-11 |
AAD/% | 2.45 | 1.40 |
MAD/% | 8.67 | 5.82 |
Bias/% | -0.02 | 0.07 |
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6652 | 0.6824 | 0.6841 | 0.9417 | 0.6993 | 0.7345 |
单环烷烃 | 0.9651 | 1.0000 | 0.7811 | 0.8928 | 0.9018 | 0.9082 | ||
双环烷烃 | 0.8587 | 0.7077 | 0.7703 | 0.8987 | 0.8683 | 0.8207 | ||
三环烷烃 | 0.4571 | 0.6687 | 0.7919 | 0.6741 | 0.5268 | 0.6237 | ||
芳香烃 | 0.7169 | 0.8359 | 0.5452 | 0.5243 | 0.3384 | 0.5921 | ||
低温中压 (20 MPa) | 链烷烃 | 0.6564 | 0.6785 | 0.6933 | 0.9402 | 0.6772 | 0.7291 | |
单环烷烃 | 1.0000 | 0.9781 | 0.7828 | 0.8928 | 0.8582 | 0.9024 | ||
双环烷烃 | 0.8892 | 0.7255 | 0.7722 | 0.9043 | 0.9194 | 0.8421 | ||
三环烷烃 | 0.4723 | 0.6653 | 0.7933 | 0.6791 | 0.5519 | 0.6324 | ||
芳香烃 | 0.7051 | 0.8560 | 0.5510 | 0.5328 | 0.3382 | 0.5966 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6610 | 0.6757 | 0.7320 | 0.9544 | 0.6429 | 0.7332 | |
单环烷烃 | 1.0000 | 0.9428 | 0.7799 | 0.9089 | 0.7897 | 0.8843 | ||
双环烷烃 | 0.9357 | 0.7743 | 0.7701 | 0.9178 | 0.9955 | 0.8787 | ||
三环烷烃 | 0.5023 | 0.6635 | 0.7895 | 0.7005 | 0.6169 | 0.6546 | ||
芳香烃 | 0.7065 | 0.9122 | 0.5614 | 0.5538 | 0.3413 | 0.6151 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6097 | 0.6273 | 0.6318 | 0.8286 | 0.7041 | 0.6803 |
单环烷烃 | 0.9277 | 0.8815 | 0.8844 | 0.7909 | 0.9065 | 0.8782 | ||
双环烷烃 | 1.0000 | 0.7973 | 0.8706 | 0.9952 | 0.8812 | 0.9089 | ||
三环烷烃 | 0.4973 | 0.6159 | 0.8980 | 0.6161 | 0.5342 | 0.6323 | ||
芳香烃 | 0.6522 | 0.9614 | 0.5960 | 0.5776 | 0.3417 | 0.6258 | ||
高温中压 (20 MPa) | 链烷烃 | 0.5970 | 0.6301 | 0.6327 | 0.8351 | 0.6839 | 0.6758 | |
单环烷烃 | 0.8885 | 0.8790 | 0.8922 | 0.7977 | 0.8679 | 0.8650 | ||
双环烷烃 | 0.9985 | 0.8025 | 0.8785 | 1.0000 | 0.9222 | 0.9203 | ||
三环烷烃 | 0.5148 | 0.6188 | 0.9058 | 0.6233 | 0.5540 | 0.6433 | ||
芳香烃 | 0.6367 | 0.9644 | 0.6040 | 0.5803 | 0.3408 | 0.6252 | ||
高温高压 (40 MPa) | 链烷烃 | 0.5776 | 0.6533 | 0.6490 | 0.8387 | 0.6550 | 0.6747 | |
单环烷烃 | 0.8447 | 0.9234 | 0.8353 | 0.8011 | 0.8210 | 0.8451 | ||
双环烷烃 | 0.9430 | 0.7470 | 0.8233 | 1.0000 | 0.9461 | 0.8919 | ||
三环烷烃 | 0.5210 | 0.6412 | 0.8471 | 0.6259 | 0.5634 | 0.6397 | ||
芳香烃 | 0.6145 | 0.8848 | 0.5781 | 0.5668 | 0.3341 | 0.5957 |
Table 4 Grey correlation analysis results of rocket kerosene viscosity
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6652 | 0.6824 | 0.6841 | 0.9417 | 0.6993 | 0.7345 |
单环烷烃 | 0.9651 | 1.0000 | 0.7811 | 0.8928 | 0.9018 | 0.9082 | ||
双环烷烃 | 0.8587 | 0.7077 | 0.7703 | 0.8987 | 0.8683 | 0.8207 | ||
三环烷烃 | 0.4571 | 0.6687 | 0.7919 | 0.6741 | 0.5268 | 0.6237 | ||
芳香烃 | 0.7169 | 0.8359 | 0.5452 | 0.5243 | 0.3384 | 0.5921 | ||
低温中压 (20 MPa) | 链烷烃 | 0.6564 | 0.6785 | 0.6933 | 0.9402 | 0.6772 | 0.7291 | |
单环烷烃 | 1.0000 | 0.9781 | 0.7828 | 0.8928 | 0.8582 | 0.9024 | ||
双环烷烃 | 0.8892 | 0.7255 | 0.7722 | 0.9043 | 0.9194 | 0.8421 | ||
三环烷烃 | 0.4723 | 0.6653 | 0.7933 | 0.6791 | 0.5519 | 0.6324 | ||
芳香烃 | 0.7051 | 0.8560 | 0.5510 | 0.5328 | 0.3382 | 0.5966 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6610 | 0.6757 | 0.7320 | 0.9544 | 0.6429 | 0.7332 | |
单环烷烃 | 1.0000 | 0.9428 | 0.7799 | 0.9089 | 0.7897 | 0.8843 | ||
双环烷烃 | 0.9357 | 0.7743 | 0.7701 | 0.9178 | 0.9955 | 0.8787 | ||
三环烷烃 | 0.5023 | 0.6635 | 0.7895 | 0.7005 | 0.6169 | 0.6546 | ||
芳香烃 | 0.7065 | 0.9122 | 0.5614 | 0.5538 | 0.3413 | 0.6151 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6097 | 0.6273 | 0.6318 | 0.8286 | 0.7041 | 0.6803 |
单环烷烃 | 0.9277 | 0.8815 | 0.8844 | 0.7909 | 0.9065 | 0.8782 | ||
双环烷烃 | 1.0000 | 0.7973 | 0.8706 | 0.9952 | 0.8812 | 0.9089 | ||
三环烷烃 | 0.4973 | 0.6159 | 0.8980 | 0.6161 | 0.5342 | 0.6323 | ||
芳香烃 | 0.6522 | 0.9614 | 0.5960 | 0.5776 | 0.3417 | 0.6258 | ||
高温中压 (20 MPa) | 链烷烃 | 0.5970 | 0.6301 | 0.6327 | 0.8351 | 0.6839 | 0.6758 | |
单环烷烃 | 0.8885 | 0.8790 | 0.8922 | 0.7977 | 0.8679 | 0.8650 | ||
双环烷烃 | 0.9985 | 0.8025 | 0.8785 | 1.0000 | 0.9222 | 0.9203 | ||
三环烷烃 | 0.5148 | 0.6188 | 0.9058 | 0.6233 | 0.5540 | 0.6433 | ||
芳香烃 | 0.6367 | 0.9644 | 0.6040 | 0.5803 | 0.3408 | 0.6252 | ||
高温高压 (40 MPa) | 链烷烃 | 0.5776 | 0.6533 | 0.6490 | 0.8387 | 0.6550 | 0.6747 | |
单环烷烃 | 0.8447 | 0.9234 | 0.8353 | 0.8011 | 0.8210 | 0.8451 | ||
双环烷烃 | 0.9430 | 0.7470 | 0.8233 | 1.0000 | 0.9461 | 0.8919 | ||
三环烷烃 | 0.5210 | 0.6412 | 0.8471 | 0.6259 | 0.5634 | 0.6397 | ||
芳香烃 | 0.6145 | 0.8848 | 0.5781 | 0.5668 | 0.3341 | 0.5957 |
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6791 | 0.6910 | 0.7958 | 0.9178 | 0.6388 | 0.7445 |
单环烷烃 | 0.9642 | 0.9833 | 0.6943 | 0.8746 | 0.7883 | 0.8609 | ||
双环烷烃 | 0.8652 | 0.7268 | 0.6863 | 0.9234 | 1.0000 | 0.8403 | ||
三环烷烃 | 0.4758 | 0.6780 | 0.7021 | 0.6760 | 0.5976 | 0.6259 | ||
芳香烃 | 0.7286 | 0.8506 | 0.5122 | 0.5502 | 0.3361 | 0.5955 | ||
低温中压 (20 MPa) | 链烷烃 | 0.7037 | 0.7085 | 0.8143 | 0.9767 | 0.6474 | 0.7701 | |
单环烷烃 | 0.9896 | 1.0000 | 0.7233 | 0.9300 | 0.7931 | 0.8872 | ||
双环烷烃 | 0.8897 | 0.7577 | 0.7151 | 0.9214 | 0.9960 | 0.8560 | ||
三环烷烃 | 0.4930 | 0.6955 | 0.7315 | 0.7161 | 0.6313 | 0.6535 | ||
芳香烃 | 0.7546 | 0.8863 | 0.5342 | 0.5594 | 0.3457 | 0.6160 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6789 | 0.6623 | 0.8012 | 0.9723 | 0.5907 | 0.7411 | |
单环烷烃 | 1.0000 | 0.8902 | 0.7320 | 0.9286 | 0.7012 | 0.8504 | ||
双环烷烃 | 0.9261 | 0.8212 | 0.7240 | 0.8973 | 0.8441 | 0.8425 | ||
三环烷烃 | 0.5182 | 0.6515 | 0.7398 | 0.7253 | 0.7100 | 0.6689 | ||
芳香烃 | 0.7231 | 0.9636 | 0.5475 | 0.5635 | 0.3379 | 0.6271 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6947 | 0.7091 | 0.8808 | 0.7771 | 0.7138 | 0.7551 |
单环烷烃 | 0.9309 | 1.0000 | 0.6329 | 0.7436 | 0.9250 | 0.8465 | ||
双环烷烃 | 0.8319 | 0.6938 | 0.6257 | 0.9233 | 0.8659 | 0.7881 | ||
三环烷烃 | 0.4502 | 0.6944 | 0.6399 | 0.5859 | 0.5268 | 0.5794 | ||
芳香烃 | 0.7510 | 0.8161 | 0.4691 | 0.6042 | 0.3425 | 0.5965 | ||
高温中压 (20 MPa) | 链烷烃 | 0.7161 | 0.7492 | 0.8541 | 0.8188 | 0.7497 | 0.7776 | |
单环烷烃 | 0.8271 | 0.8633 | 0.6046 | 0.7786 | 0.9969 | 0.8141 | ||
双环烷烃 | 0.7419 | 0.6106 | 0.5976 | 1.0000 | 0.7590 | 0.7418 | ||
三环烷烃 | 0.4073 | 0.7314 | 0.6116 | 0.5961 | 0.4705 | 0.5634 | ||
芳香烃 | 0.7817 | 0.7126 | 0.4438 | 0.5407 | 0.3351 | 0.5628 | ||
高温高压 (40 MPa) | 链烷烃 | 0.6505 | 0.6896 | 0.7781 | 0.8363 | 0.6758 | 0.7261 | |
单环烷烃 | 1.0000 | 0.9893 | 0.7197 | 0.7996 | 0.8499 | 0.8717 | ||
双环烷烃 | 0.9370 | 0.7389 | 0.7110 | 0.9974 | 0.9581 | 0.8685 | ||
三环烷烃 | 0.4918 | 0.6764 | 0.7283 | 0.6275 | 0.5720 | 0.6192 | ||
芳香烃 | 0.6968 | 0.8704 | 0.5229 | 0.5905 | 0.3426 | 0.6046 |
Table 5 Grey correlation analysis results of isobaric viscosity change rate of rocket kerosene
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6791 | 0.6910 | 0.7958 | 0.9178 | 0.6388 | 0.7445 |
单环烷烃 | 0.9642 | 0.9833 | 0.6943 | 0.8746 | 0.7883 | 0.8609 | ||
双环烷烃 | 0.8652 | 0.7268 | 0.6863 | 0.9234 | 1.0000 | 0.8403 | ||
三环烷烃 | 0.4758 | 0.6780 | 0.7021 | 0.6760 | 0.5976 | 0.6259 | ||
芳香烃 | 0.7286 | 0.8506 | 0.5122 | 0.5502 | 0.3361 | 0.5955 | ||
低温中压 (20 MPa) | 链烷烃 | 0.7037 | 0.7085 | 0.8143 | 0.9767 | 0.6474 | 0.7701 | |
单环烷烃 | 0.9896 | 1.0000 | 0.7233 | 0.9300 | 0.7931 | 0.8872 | ||
双环烷烃 | 0.8897 | 0.7577 | 0.7151 | 0.9214 | 0.9960 | 0.8560 | ||
三环烷烃 | 0.4930 | 0.6955 | 0.7315 | 0.7161 | 0.6313 | 0.6535 | ||
芳香烃 | 0.7546 | 0.8863 | 0.5342 | 0.5594 | 0.3457 | 0.6160 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6789 | 0.6623 | 0.8012 | 0.9723 | 0.5907 | 0.7411 | |
单环烷烃 | 1.0000 | 0.8902 | 0.7320 | 0.9286 | 0.7012 | 0.8504 | ||
双环烷烃 | 0.9261 | 0.8212 | 0.7240 | 0.8973 | 0.8441 | 0.8425 | ||
三环烷烃 | 0.5182 | 0.6515 | 0.7398 | 0.7253 | 0.7100 | 0.6689 | ||
芳香烃 | 0.7231 | 0.9636 | 0.5475 | 0.5635 | 0.3379 | 0.6271 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6947 | 0.7091 | 0.8808 | 0.7771 | 0.7138 | 0.7551 |
单环烷烃 | 0.9309 | 1.0000 | 0.6329 | 0.7436 | 0.9250 | 0.8465 | ||
双环烷烃 | 0.8319 | 0.6938 | 0.6257 | 0.9233 | 0.8659 | 0.7881 | ||
三环烷烃 | 0.4502 | 0.6944 | 0.6399 | 0.5859 | 0.5268 | 0.5794 | ||
芳香烃 | 0.7510 | 0.8161 | 0.4691 | 0.6042 | 0.3425 | 0.5965 | ||
高温中压 (20 MPa) | 链烷烃 | 0.7161 | 0.7492 | 0.8541 | 0.8188 | 0.7497 | 0.7776 | |
单环烷烃 | 0.8271 | 0.8633 | 0.6046 | 0.7786 | 0.9969 | 0.8141 | ||
双环烷烃 | 0.7419 | 0.6106 | 0.5976 | 1.0000 | 0.7590 | 0.7418 | ||
三环烷烃 | 0.4073 | 0.7314 | 0.6116 | 0.5961 | 0.4705 | 0.5634 | ||
芳香烃 | 0.7817 | 0.7126 | 0.4438 | 0.5407 | 0.3351 | 0.5628 | ||
高温高压 (40 MPa) | 链烷烃 | 0.6505 | 0.6896 | 0.7781 | 0.8363 | 0.6758 | 0.7261 | |
单环烷烃 | 1.0000 | 0.9893 | 0.7197 | 0.7996 | 0.8499 | 0.8717 | ||
双环烷烃 | 0.9370 | 0.7389 | 0.7110 | 0.9974 | 0.9581 | 0.8685 | ||
三环烷烃 | 0.4918 | 0.6764 | 0.7283 | 0.6275 | 0.5720 | 0.6192 | ||
芳香烃 | 0.6968 | 0.8704 | 0.5229 | 0.5905 | 0.3426 | 0.6046 |
1 | 吴燕生. 创新突破 为高质量发展贡献航天力量[J]. 求是, 2022(20): 48-52. |
Wu Y S. Innovation and breakthrough contribute aerospace power to high-quality development[J]. QiuShi, 2022(20): 48-52. | |
2 | 陈建华, 曹晨, 杨永强, 等. “长征五号”火箭液氧煤油发动机总体技术[J]. 深空探测学报, 2021, 8(4): 354-361. |
Chen J H, Cao C, Yang Y Q, et al. General technical review of Long March 5 liquid oxygen kerosene engine[J]. Journal of Deep Space Exploration, 2021, 8(4):354-361. | |
3 | 李斌, 陈晖, 马冬英, 等. 500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10. |
Li B, Chen H, Ma D Y, et al. Development of 500 tf class high pressure stage combustion LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10. | |
4 | Cheng X, Bi Q C, Lan H P, et al. Flow and heat transfer characteristics of coal-based rocket kerosene in mini-tube with ultra-high parameters[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106099. |
5 | Haeseler D, Mäding C, Götz A, et al. Recent developments for future launch vehicle LOX/HC rocket engines[C]// 6th International Symposium Propulsion for Space Transportation of the st Century. Versailles, France, 2002. |
6 | Cho W K, Seol W S, Son M, et al. Development of preliminary design program for combustor of regenerative cooled liquid rocket engine[J]. Journal of Thermal Science, 2011, 20(5): 467-473. |
7 | Son M, Ko S, Koo J. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines[J]. Journal of Thermal Science, 2014, 23(3): 259-268. |
8 | Baled H O, Enick R M, Mallepally R R, et al. Viscosity measurements of rocket propellant RP-2 over wide ranges of temperature and pressure[J]. Journal of Chemical & Engineering Data, 2020, 65(6): 3221-3229. |
9 | Outcalt S L, Laesecke A, Brumback K J. Thermophysical properties measurements of rocket propellants RP-1 and RP-2[J]. Journal of Propulsion and Power, 2009, 25(5): 1032-1040. |
10 | Fortin T J, Bruno T J. Assessment of the thermophysical properties of thermally stressed RP-1 and RP-2[J]. Energy & Fuels, 2013, 27(5): 2506-2514. |
11 | Laesecke A, Cousins D S. Wide-ranging viscosity measurements of rocket propellant RP-2[J]. Journal of Propulsion and Power, 2013, 29(6): 1323-1327. |
12 | Abdulagatov I M, Akhmedova-Azizova L A. Viscosity of rocket propellant (RP-1) at high temperatures and high pressures[J]. Fuel, 2019, 235: 703-714. |
13 | Zhang J Q, Yang C, Liu Z H, et al. Measurements and predictive models for the viscosity of coal-based kerosene at temperatures up to 673 K and pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2242-2256. |
14 | 刘思峰, 杨英杰. 灰色系统研究进展(2004—2014)[J]. 南京航空航天大学学报, 2015, 47(1): 1-18. |
Liu S F, Yang Y J. Advances in grey system research(2004—2014)[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1): 1-18. | |
15 | Yang Z Q, Bi Q C, Feng S. Viscosity measurement of endothermic fuels at temperatures from 303 K to 673 K and pressures up to 5.00 MPa[J]. Journal of Chemical & Engineering Data, 2016, 61(10): 3472-3480. |
16 | 张家庆, 刘朝晖, 李宇, 等. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
Zhang J Q, Liu Z H, Li Y, et al. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161. | |
17 | Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1[DB]. Gaithersburg, MD: National Institute of Standards and Technology, 2013. |
18 | ASTM International. Test method for hydrocarbon types in middle distillates by mass spectrometry: [S]. America: American Society for Testing and Materials, 2019. |
19 | Bruno T J, Smith B L. Improvements in the measurement of distillation curves(2): Application to aerospace/aviation fuels RP-1 and S-8[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4381-4388. |
20 | Rocha W F de C, Sheen D A. Determination of physicochemical properties of petroleum derivatives and biodiesel using GC/MS and chemometric methods with uncertainty estimation[J]. Fuel, 2019, 243: 413-422. |
21 | Glasstone S, Laidler K, Eyring E. Theory of Rate Processes[M]. New York: McGraw-Hill, 1941. |
22 | Tyrrell H J V, Harris K R. Theoretical interpretations of diffusion coefficients[M]//Diffusion in Liquids. London: Butterworths, 1984:258-310. |
23 | Wang S, Sui M, Luo H, et al. An optimized model for predicting kinematic viscosities of biodiesel fuels [J]. Fuel Cells, 2021, 21(1): 39-44. |
24 | Luo S B, Xu D Q, Song J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754. |
25 | Knab O, Fröhlich A, Wennerberg D, et al. Advanced cooling circuit layout for the VINCI expander cycle thrust chamber[C]// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002: 4005 |
26 | Negishi H, Daimon Y, Kawashima H. Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2014: 4010. |
27 | Urbano A, Nasuti F. Parametric analysis of cooling properties of candidate expander-cycle fuels[J]. Journal of Propulsion and Power, 2014, 30(1): 153-163. |
28 | 胡松山, 王浩, 覃润浦, 等. 沥青四组分与不同加载模式下橡胶沥青零剪切黏度相关性[J]. 复合材料学报, 2018, 35(4): 999-1013. |
Hu S S, Wang H, Qin R P, et al. Correlation between asphalt four components and asphalt rubber zero shear viscosity under different loading modes[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 999-1013. | |
29 | 刘文静, 靳岚, 张金刚, 等. 基于灰色关联法与FAHP的磨煤机能耗分析[J]. 甘肃科学学报, 2022, 34(5): 12-17. |
Liu W J, Jin L, Zhang J G, et al. Analysis of energy consumption of coal mill by grey relational method and FAHP[J]. Journal of Gansu Sciences, 2022, 34(5): 12-17. | |
30 | Akhmedova-Azizova L A, Abdulagatov I M, Bruno T J. Effect of RP-1 compositional variability on thermal conductivity at high temperatures and high pressures[J]. Energy & Fuels, 2009, 23(9): 4522-4528. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[4] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[5] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[6] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[7] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[8] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[9] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[10] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[11] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[12] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[13] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[14] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[15] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||