CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1587-1597.DOI: 10.11949/0438-1157.20221613
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Chuanbao XIAO1(), Linyang LI1, Wufeng LIU1, Nianbing ZHONG1(), Quanhua XIE1, Dengjie ZHONG2, Haixing CHANG2
Received:
2022-12-13
Revised:
2023-04-07
Online:
2023-06-02
Published:
2023-04-05
Contact:
Nianbing ZHONG
肖川宝1(), 李林洋1, 刘武锋1, 钟年丙1(), 解泉华1, 钟登杰2, 常海星2
通讯作者:
钟年丙
作者简介:
肖川宝(1996—),男,硕士研究生, X_ChuanBao@163.com
基金资助:
CLC Number:
Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption[J]. CIESC Journal, 2023, 74(4): 1587-1597.
肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597.
光催化剂 | 浓度/ (mg/L) | 体积/ ml | 光源 | 时间/ min | 降解率/% | 降解速率/ (mg/min) | 文献 |
---|---|---|---|---|---|---|---|
Ir-TiO2 NPs | 30 | 50 | 自然光 | 60 | 72.1 | 0.018 | [ |
TBi-球状化合物 | 10 | 100 | 20 W UVP | 240 | 90 | 0.004 | [ |
Fe3O4@TiO2@Au | 75 | 20 | 150 W氙灯 | 40 | 97.7 | 0.037 | [ |
CdS@TiO2 | 10 | 100 | Mic-LED-455 | 360 | 77 | 0.002 | [ |
RuO2/Mo-BiVO4 | 80 | 200 | 50 W Vis-LED | 360 | 91.1 | 0.041 | 本文 |
Table 1 Degradation efficiency of 2,4,6-TCP by different photocatalysts
光催化剂 | 浓度/ (mg/L) | 体积/ ml | 光源 | 时间/ min | 降解率/% | 降解速率/ (mg/min) | 文献 |
---|---|---|---|---|---|---|---|
Ir-TiO2 NPs | 30 | 50 | 自然光 | 60 | 72.1 | 0.018 | [ |
TBi-球状化合物 | 10 | 100 | 20 W UVP | 240 | 90 | 0.004 | [ |
Fe3O4@TiO2@Au | 75 | 20 | 150 W氙灯 | 40 | 97.7 | 0.037 | [ |
CdS@TiO2 | 10 | 100 | Mic-LED-455 | 360 | 77 | 0.002 | [ |
RuO2/Mo-BiVO4 | 80 | 200 | 50 W Vis-LED | 360 | 91.1 | 0.041 | 本文 |
1 | Liang Y N, Zhao T Y, Xiao B, et al. 2,4,6-Trichlorophenol degradation mechanism and microbial community analysis in an intimately coupled visible-light photocatalysis and biodegradation system[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(9): 2547-2556. |
2 | Li H, Li S Y, Jin L D, et al. Activation of peroxymonosulfate by magnetic Fe3S4/biochar composites for the efficient degradation of 2, 4, 6-trichlorophenol: synergistic effect and mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107085. |
3 | Aksu Z. Application of biosorption for the removal of organic pollutants: a review[J]. Process Biochemistry, 2005, 40(3/4): 997-1026. |
4 | Igbinosa E O, Odjadjare E E, Chigor V N, et al. Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective[J]. The Scientific World Journal, 2013, 2013: 460215. |
5 | Ghezali S, Mahdad-Benzerdjeb A, Ameri M, et al. Adsorption of 2,4,6-trichlorophenol on bentonite modified with benzyldimethyltetradecylammonium chloride[J]. Chem. Int., 2018, 4(1): 24-32. |
6 | Song J X, Zhao Q, Guo J, et al. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6-trichlorophenol[J]. Science of the Total Environment, 2019, 651: 1368-1376. |
7 | Benitez F J, Beltran-Heredia J, Acero J L, et al. Chemical decomposition of 2,4,6-trichlorophenol by ozone, Fenton's reagent, and UV radiation[J]. Industrial & Engineering Chemistry Research, 1999, 38(4): 1341-1349. |
8 | Wang Y B, Zhang Y N, Zhao G H, et al. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3965-3972. |
9 | Ji H H, Chang F, Hu X F, et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal, 2013, 218: 183-190. |
10 | Wang X X, Hu J P, Chen Q, et al. Synergic degradation of 2,4,6-trichlorophenol in microbial fuel cells with intimately coupled photocatalytic-electrogenic anode[J]. Water Research, 2019, 156: 125-135. |
11 | 张开莲,杨凯,李笑笑,等. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613. |
Zhang K L, Yang K, Li X X, et al. One-step hydrothermal synthesis of In2S3/CdIn2S4 heterojunction microsphere and its photocatalytic performance[J]. CIESC Journal, 2020, 71(8): 3602-3613. | |
12 | Ji K M, Dai H X, Deng J G, et al. 3DOM BiVO4 supported silver bromide and noble metals: high-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol[J]. Applied Catalysis B: Environmental, 2015, 168/169: 274-282. |
13 | 钟兰兰,袁吉林,罗宏扬,等.光催化与生物膜直接耦合降解4-氟苯酚废水[J].中国环境科学,2021, 41(8):3660-3666. |
Zhong L L, Yuan J L, Luo H Y, et al. The degradation of 4-fluorophenol wastewater by intimately coupling photocatalysis and biofilm syestem[J]. China Environmental Science, 2021, 41(8): 3660-3666. | |
14 | Malathi A, Madhavan J, Ashokkumar M, et al. A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications[J]. Applied Catalysis A: General, 2018, 555: 47-74. |
15 | Cao K F, Chen Z, Wu Y H, et al. The noteworthy chloride ions in reclaimed water: harmful effects, concentration levels and control strategies[J]. Water Research, 2022, 215: 118271. |
16 | Madhav S, Ahamad A, Singh A K, et al. Water pollutants: sources and impact on the environment and human health[M]//Pooja D, Kumar P, Singh P, et al. Sensors in Water Pollutants Monitoring: Role of Material. Singapore: Springer, 2020: 43-62. |
17 | Xu R Y, Ren H, Chi T T, et al. Ozone oxidation of 2,4,6-TCP in the presence of halide ions: kinetics, degradation pathways and toxicity evaluation[J]. Chemosphere, 2022, 288: 132343. |
18 | Wang Q, Warnan J, Rodríguez-Jiménez S, et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water[J]. Nature Energy, 2020, 5(9): 703-710. |
19 | Zhang L Y, Dai Z X, Zheng G H, et al. Superior visible light photocatalytic performance of reticular BiVO4 synthesized via a modified sol-gel method[J]. RSC advances, 2018, 8(19): 10654-10664. |
20 | Lv L, Sun P D, Gu Z Y, et al. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1444-1449. |
21 | Xu H, Wu C D, Li H M, et al. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Applied Surface Science, 2009, 256(3): 597-602. |
22 | Zhang B, Zhang H P, Wang Z Y, et al. Doping strategy to promote the charge separation in BiVO4 photoanodes[J]. Applied Catalysis B: Environmental, 2017, 211: 258-265. |
23 | Zhou M, Bao J, Xu Y, et al. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting[J]. ACS Nano, 2014, 8(7): 7088-7098. |
24 | Zhang Z C, Liu Y, Chen B, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications[J]. Advanced Materials, 2016, 28(46): 10282-10286. |
25 | Zhong N B, Chen M, Luo Y H, et al. A novel photocatalytic optical hollow-fiber with high photocatalytic activity for enhancement of 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2019, 355: 731-739. |
26 | Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4 [J]. Journal of Hazardous Materials, 2008, 153(1/2): 877-884. |
27 | Yang L, Kruse B. Revised Kubelka-Munk theory (Ⅰ): Theory and application[J]. Journal of the Optical Society of America A, 2004, 21(10): 1933-1941. |
28 | Hu J L, Gan M Y, Ma L, et al. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites[J]. Applied Surface Science, 2015, 328: 325-334. |
29 | Keyikoglu R, Khataee A, Yoon Y. Layered double hydroxides for removing and recovering phosphate: recent advances and future directions[J]. Advances in Colloid and Interface Science, 2022, 300: 102598. |
30 | He L, Yang C, Ding J, et al. Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: significant role of electron transfer[J]. Applied Catalysis B: Environmental, 2022, 303: 120880. |
31 | Dhanabal R, Velmathi S, Bose A C. Fabrication of RuO2-Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity[J]. Journal of Hazardous Materials, 2018, 344: 865-874. |
32 | Ding K N, Chen B, Fang Z X, et al. Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(26): 13465-13476. |
33 | Zhong N B, Yuan J L, Luo Y H, et al. Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis[J]. Chemical Engineering Journal, 2021, 425: 130666. |
34 | Kuśmierek K, Świątkowski A, Dąbek L. Removal of 2,4,6-trichlorophenol from aqueous solutions using agricultural waste as low-cost adsorbents[J]. Environment Protection Engineering, 2017, 43(4). |
35 | Kumar K V, Porkodi K, Rocha F. Langmuir-Hinshelwood kinetics—a theoretical study[J]. Catalysis Communications, 2008, 9(1): 82-84. |
36 | Gaya U I, Abdullah A H, Hussein M Z, et al. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder[J]. Desalination, 2010, 263(1/2/3): 176-182. |
37 | Ayodhya D, Perka S, Nambigari N. Sunlight-driven efficient photocatalytic and antimicrobial studies of microwave-assisted Ir-doped TiO2 nanoparticles for environmental safety[J]. Nanochemistry Research, 2018, 3(1): 36-49. |
38 | Hernández-Del Castillo P C, Oliva J, Núñez-Luna B P, et al. Novel polypropylene-TiO2: Bi spherical floater for the efficient photocatalytic degradation of the recalcitrant 2,4,6-TCP herbicide[J]. Journal of Environmental Management, 2023, 329: 117057. |
39 | Choi K H, Min J, Park S Y, et al. Enhanced photocatalytic degradation of tri-chlorophenol by Fe3O4@TiO2@Au photocatalyst under visible-light[J]. Ceramics International, 2019, 45(7): 9477-9482. |
40 | Al-Fahdi T, Al Marzouqi F, Kuvarega A T, et al. Visible light active CdS@TiO2 core-shell nanostructures for the photodegradation of chlorophenols[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374: 75-83. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[3] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[4] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[5] | Yiping FAN, Chunxi LU. Research progress on dedust scheme of coupling centrifugal force field with moving bed filtration [J]. CIESC Journal, 2023, 74(1): 157-169. |
[6] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[7] | Jie GUO, Fan ZHANG, Shiyu XIE, Lixin YOU, Yaguang SUN. NHC-Pd functionalized coordination polymer (NHC-Pd@Zn-L): synthesis, characterization and catalytic performance in Suzuki-Miyaura cross-coupling reaction [J]. CIESC Journal, 2022, 73(8): 3608-3614. |
[8] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[9] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
[10] | Yu QIAN, Yaoxi CHEN, Xiaofei SHI, Siyu YANG. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system [J]. CIESC Journal, 2022, 73(5): 2101-2110. |
[11] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[12] | Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy [J]. CIESC Journal, 2022, 73(3): 1324-1334. |
[13] | Zhibin LU, Yimeng LI, Chang HE, Bingjian ZHANG, Qinglin CHEN, Ming PAN. Integrating physics-informed neural networks with partitioned coupling strategy for modeling conjugate heat transfer [J]. CIESC Journal, 2022, 73(12): 5483-5493. |
[14] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
[15] | Xiaorong WANG, Xi ZENG, Fang WANG, Guangyi ZHANG, Deping XU, Guangwen XU. Effect of temperature and atmosphere on ash sintering characteristics of furfural residue with high K and S [J]. CIESC Journal, 2022, 73(1): 411-424. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||