CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2363-2373.DOI: 10.11949/0438-1157.20230301
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yuan YU1(), Weiwei CHEN1, Junjie FU1, Jiaxiang LIU2, Zhiwei JIAO1()
Received:
2023-03-28
Revised:
2023-05-16
Online:
2023-07-27
Published:
2023-06-05
Contact:
Zhiwei JIAO
于源1(), 陈薇薇1, 付俊杰1, 刘家祥2, 焦志伟1()
通讯作者:
焦志伟
作者简介:
于源(1976—),女,博士,副教授,tougao_20192019@163.com
基金资助:
CLC Number:
Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier[J]. CIESC Journal, 2023, 74(6): 2363-2373.
于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373.
Add to citation manager EndNote|Ris|BibTeX
尺寸比例因数k1 | Dv | Dzn | Dzw | Ddn | b | a |
---|---|---|---|---|---|---|
1 | 219 | 70 | 100 | 132 | 48 | 31 |
2 | 438 | 140 | 200 | 264 | 96 | 62 |
4 | 876 | 280 | 400 | 528 | 192 | 124 |
8 | 1752 | 560 | 800 | 1056 | 384 | 248 |
Table 1 Main structural dimensions of geometrically similar turbo air classifier models
尺寸比例因数k1 | Dv | Dzn | Dzw | Ddn | b | a |
---|---|---|---|---|---|---|
1 | 219 | 70 | 100 | 132 | 48 | 31 |
2 | 438 | 140 | 200 | 264 | 96 | 62 |
4 | 876 | 280 | 400 | 528 | 192 | 124 |
8 | 1752 | 560 | 800 | 1056 | 384 | 248 |
Fig.3 Area weighted average tangential velocity curves of the cylinder surface in the annular region of geometrically similar turbo air classifier models
(D/2k1)/mm | 平均切向速度/(m/s) | |||
---|---|---|---|---|
k1=1 | k1=2 | k1=4 | k1=8 | |
51 | 21.70 | 22.89 | 23.33 | 25.09 |
52 | 21.40 | 22.57 | 23.02 | 24.57 |
53 | 20.97 | 22.19 | 22.70 | 24.32 |
54 | 20.57 | 21.78 | 22.36 | 23.82 |
55 | 20.45 | 21.38 | 21.97 | 23.34 |
56 | 20.05 | 20.97 | 21.55 | 23.00 |
57 | 19.61 | 20.57 | 21.14 | 22.44 |
58 | 19.29 | 20.19 | 20.74 | 22.03 |
59 | 19.01 | 19.87 | 20.31 | 21.46 |
60 | 18.61 | 19.53 | 19.87 | 20.93 |
61 | 18.22 | 19.19 | 19.46 | 20.41 |
62 | 18.00 | 18.68 | 18.98 | 19.78 |
63 | 17.60 | 18.27 | 18.49 | 19.06 |
64 | 17.28 | 18.00 | 18.08 | 18.70 |
Table 2 Area weighted average tangential velocity of the cylinder surface in the annular region of classifier models
(D/2k1)/mm | 平均切向速度/(m/s) | |||
---|---|---|---|---|
k1=1 | k1=2 | k1=4 | k1=8 | |
51 | 21.70 | 22.89 | 23.33 | 25.09 |
52 | 21.40 | 22.57 | 23.02 | 24.57 |
53 | 20.97 | 22.19 | 22.70 | 24.32 |
54 | 20.57 | 21.78 | 22.36 | 23.82 |
55 | 20.45 | 21.38 | 21.97 | 23.34 |
56 | 20.05 | 20.97 | 21.55 | 23.00 |
57 | 19.61 | 20.57 | 21.14 | 22.44 |
58 | 19.29 | 20.19 | 20.74 | 22.03 |
59 | 19.01 | 19.87 | 20.31 | 21.46 |
60 | 18.61 | 19.53 | 19.87 | 20.93 |
61 | 18.22 | 19.19 | 19.46 | 20.41 |
62 | 18.00 | 18.68 | 18.98 | 19.78 |
63 | 17.60 | 18.27 | 18.49 | 19.06 |
64 | 17.28 | 18.00 | 18.08 | 18.70 |
模型 | 尺寸比例因数k1 | C1 | C2 |
---|---|---|---|
Dzw=100 mm | 1 | 1165 | -1.010 |
Dzw=200 mm | 2 | 1480 | -1.059 |
Dzw=400 mm | 4 | 2151 | -1.145 |
Dzw=800 mm | 8 | 3793 | -1.272 |
Table 3 Coefficients C1 and C2 of the prediction formula for area weighted average tangential velocity of the cylinder surface in annular region of classifier models
模型 | 尺寸比例因数k1 | C1 | C2 |
---|---|---|---|
Dzw=100 mm | 1 | 1165 | -1.010 |
Dzw=200 mm | 2 | 1480 | -1.059 |
Dzw=400 mm | 4 | 2151 | -1.145 |
Dzw=800 mm | 8 | 3793 | -1.272 |
Fig.6 Predicted and simulated area weighted average tangential velocity of the cylinder surface in the annular region of geometrically similar classifier models
Fig.7 Predicted and simulated area weighted average radial velocity of the cylinder surface in the annular region of geometrically similar classifier models
16 | Zeng Y, Huang B W, Qin D X, et al. Numerical and experiment investigation on novel guide vane structures of turbo air classifier[J]. Processes, 2022, 10(5): 844. |
17 | 任文静. 涡流空气分级机流场分析及结构优化[D]. 北京: 北京化工大学, 2016. |
Ren W J. Flow field analyses and structure optimization for turbo air classifiers[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
18 | Sun Z P, Liang L L, Liu C Y, et al. Structural optimization of vortex finder for a centrifugal air classifier[J]. Chemical Engineering Research and Design, 2021, 166: 220-226. |
19 | Zeng Y, Zhang S, Zhou Y, et al. Numerical simulation of a flow field in a turbo air classifier and optimization of the process parameters[J]. Processes, 2020, 8(2): 237. |
20 | Denmud N, Baite K, Plookphol T, et al. Effects of operating parameters on the cut size of turbo air classifier for particle size classification of SAC305 lead-free solder powder[J]. Processes, 2019, 7(7): 427. |
21 | Adamčík M, Svěrák T, Peciar P. Parameters effecting forced vortex formation in blade passageway of dynamic air classifier[J]. Acta Polytechnica, 2017, 57(5): 304. |
22 | Peng S H, Wu Y, Tao J, et al. Airflow velocity designing for air classifier of manufactured sand based on CPFD method[J]. Minerals, 2022, 12(1): 90. |
23 | Shi C L, Chen S H, Ma J, et al. Experimental and theoretical study on strengthening mechanism of coarse coal slime classification process with cone wall structure[J]. Fuel, 2022, 309: 122127. |
24 | Akimochkina G V, Rogovenko E S, Gareeva A S, et al. Aerodynamic separation of dispersed microspheres PM2.5, PM10 from fly ash of lignite combustion for production of new materials[J]. Journal of Siberian Federal University-Chemistry, 2022, 15(3): 387-397. |
25 | Li H, He Y Q, Shi F N, et al. Performance of the static air classifier in a vertical spindle mill[J]. Fuel, 2016, 177: 8-14. |
26 | 邹鹏程, 张明星, 黄生龙, 等. 膨化黑米粉的粉碎分级实验[J]. 化工进展, 2018, 37(5): 1664-1669. |
Zou P C, Zhang M X, Huang S L, et al. Experimental study on crushing and grading of expanded black rice flour[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1664-1669. | |
27 | Barimani M, Green S, Rogak S. Particulate concentration distribution in centrifugal air classifiers[J]. Minerals Engineering, 2018, 126: 44-51. |
28 | Yu Y, Liu J X, Zhang K. Establishment of a prediction model for the cut size of turbo air classifiers[J]. Powder Technology, 2014, 254: 274-280. |
29 | 刘家祥, 何廷树, 夏靖波. 涡流分级机流场特性分析及分级过程[J]. 硅酸盐学报, 2003, 31(5): 485-489. |
Liu J X, He T S, Xia J B. Air flow field characteristics analyzing and classification process of the turbo classifier[J]. Journal of the Chinese Ceramic Society, 2003, 31(5): 485-489. | |
30 | 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5): 562-589. |
Yan C, Yu J, Xu J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-589. | |
31 | 赵海朋, 任成, 张来龙, 等. 涡流空气分级机转笼底盘结构对分级性能的影响[J]. 北京化工大学学报(自然科学版), 2018, 45(6): 73-78. |
Zhao H P, Ren C, Zhang L L, et al. Influence of the rotor cage underpan on the classification performance of a turbo air classifier[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(6): 73-78. | |
32 | Zambrano H, Di G Sigalotti L, Peña-Polo F, et al. Turbulent models of oil flow in a circular pipe with sudden enlargement[J]. Applied Mathematical Modelling, 2015, 39(21): 6711-6724. |
33 | Yu Y, Wang L, Liu J. Analysis of numerical simulation models for the turbo air classifier[J]. Materialwissenschaft Und Werkstofftechnik, 2022, 53(5): 644-657. |
34 | 刘蓉蓉, 刘家祥, 于源. 涡流空气分级机进口风速和转笼转速匹配研究[J]. 化学工程, 2015, 43(3): 41-45. |
Liu R R, Liu J X, Yu Y. Matching of air inlet velocity and rotor cage’s rotating speed of turbo air classifier[J]. Chemical Engineering (China), 2015, 43(3): 41-45. | |
35 | 袁惠新, 李新, 刘麟, 等. 液-液水力旋流器准自由涡的数值模拟研究[J]. 矿山机械, 2012, 40(4): 84-87. |
1 | Brar L S, Kumar A. CFD simulations of cyclone separators with different diameters: analysis of gas cyclones with different cylinder diameters[C]//2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). Greater Noida, India: IEEE, 2015: 180-185. |
2 | Ghasemi A, Shams M, Heyhat M M. A numerical scheme for optimizing gas liquid cylindrical cyclone separator[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231(4): 836-848. |
3 | Erol H I, Turgut O, Unal R. Experimental and numerical study of Stairmand cyclone separators: a comparison of the results of small-scale and large-scale cyclones[J]. Heat and Mass Transfer, 2019, 55(8): 2341-2354. |
4 | Shang L, Wang N. Design of increasing capacity of centrifugal pump without changing overall dimensions[C]//Proc. SPIE 12079, Second IYSF Academic Symposium on Artificial Intelligence and Computer Engineering, 2021, 12079: 452-455. |
5 | Zhang Z. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump[J]. Journal of Hydrodynamics, 2018, 30(1): 140-152. |
6 | 柏静远, 于永海. 基于相似理论的单级双吸离心泵选型新方法[J]. 中国农村水利水电, 2018, 425(3): 96-98, 104. |
Bai J Y, Yu Y H. New method of selection of single-stage and double-acting centrifugal pump based on similarity theory[J]. China Rural Water and Hydropower, 2018, 425(3): 96-98, 104. | |
7 | 司乔瑞, 崔强磊, 袁寿其, 等. 气液两相条件下进口含气率对离心泵相似定律的影响[J]. 农业机械学报, 2018, 49(2): 107-112, 268. |
Si Q R, Cui Q L, Yuan S Q, et al. Influence of inlet gas volume fraction on similarity law in centrifugal pumps under gas-liquid two-phase condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 107-112, 268. | |
8 | Zhao X Y, Ao Q, Yang L W, et al. Application of superfine pulverization technology in biomaterial industry[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(3): 337-343. |
9 | Jia F C, Mou X L, Fang Y, et al. A new rotor-type dynamic classifier: structural optimization and industrial applications[J]. Processes, 2021, 9(6): 1033. |
10 | Petit H A, Irassar E F, Barbosa M R. Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD-DEM simulations[J]. Computational Particle Mechanics, 2018, 5(1): 87-102. |
11 | Sun Z P, Liu C Y, Yang G, et al. Orthogonal vortices characteristic, performance evaluation and classification mechanism of a horizontal classifier with three rotor cages[J]. Powder Technology, 2022, 404: 117438. |
12 | Galletti C, Rum A, Turchi V, et al. Numerical analysis of flow field and particle motion in a dynamic cyclonic selector[J]. Advanced Powder Technology, 2020, 31(3): 1264-1273. |
13 | Mou X L, Jia F C, Fang Y, et al. CFD-based structural optimization of rotor cage for high-efficiency rotor classifier[J]. Processes, 2021, 9(7): 1148. |
14 | Yu Y, Kong X, Ren C, et al. Effect of the rotor cage chassis on inner flow field of a turbo air classifier[J]. Materialwissenschaft Und Werkstofftechnik, 2021, 52(7): 772-780. |
15 | Wu S B, Liu J X, Yu Y. Design of a new double layer spreading plate for a turbo air classifier[J]. Powder Technology, 2017, 312: 277-286. |
35 | Yuan H X, Li X, Liu L, et al. Study on numerical simulation of Rankine vortex in hydrocyclones for liquid-liquid separation[J]. Mining & Processing Equipment, 2012, 40(4): 84-87. |
36 | 张涛. 喷射式液体输送泵内部流场的数值模拟与优化研究[D]. 北京: 中国农业科学院, 2011. |
Zhang T. Simulation and optimization research of the jet pump internal flow field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. | |
37 | 张翔禹. 超细粉体气固旋流分级的流场特性与分离行为研究[D]. 徐州: 中国矿业大学, 2021. |
Zhang X Y. Study on flow field characteristics and separation behavior of ultrafine powders gas-solid swirling classification[D]. Xuzhou: China University of Mining and Technology, 2021. | |
38 | 宋健斐, 杨光福, 陈建义, 等. 旋风分离器内气相流场的相似模化分析(Ⅱ): 尺寸参数[J]. 化工学报, 2010, 61(9): 2274-2279. |
Song J F, Yang G F, Chen J Y, et al. Similarity analysis of modeling of gas phase flow field in cyclone separator (Ⅱ): Size parameters[J]. CIESC Journal, 2010, 61(9): 2274-2279. | |
39 | 王冠. 脉冲袋式除尘器内部流场的研究[D]. 北京: 中冶集团建筑研究总院, 2007. |
Wang G. A study on flow field in the impulse bag-type dust filter[D]. Beijing: Central Research Institute of Building and Construction Co., Ltd., MCC Group, 2007. | |
40 | 宫泽, 董智, 王德喜, 等. 基于相似理论的轻烧氧化镁闪速炉实验装置研究[J]. 节能, 2022, 41(1): 56-58. |
Gong Z, Dong Z, Wang D X, et al. Research on experimental device of light burning magnesium oxide flash furnace based on similarity theory[J]. Energy Conservation, 2022, 41(1): 56-58. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[14] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[15] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||