CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3494-3501.DOI: 10.11949/0438-1157.20230646
• Energy and environmental engineering • Previous Articles Next Articles
Xiaosong CHENG(), Yonggao YIN(), Chunwen CHE
Received:
2023-06-29
Revised:
2023-08-16
Online:
2023-10-18
Published:
2023-08-25
Contact:
Yonggao YIN
通讯作者:
殷勇高
作者简介:
程小松(1993—),男,博士研究生,xiaosong-cheng@ seu.edu.cn
基金资助:
CLC Number:
Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration[J]. CIESC Journal, 2023, 74(8): 3494-3501.
程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501.
Add to citation manager EndNote|Ris|BibTeX
名称 | 类型 | 准确度 | 范围 |
---|---|---|---|
温度计 | T型热电偶 | ±0.1℃ | -10~120℃ |
温湿度传感器 | Vaisala HMT120 | 温度: ±0.1℃;湿度: ±1.5% | 温度范围: -40~60℃;湿度范围:0~100% |
空气流量计 | KIMO CP300 | ±1 m3/h | 0~9999 m3/h |
电磁流量计 | KQ-LDBF-15S-T2F1-000D | ±0.5% | 0.16~2.5 m3/h |
电磁流量计 | KQ-LDBF-15S-M2F1-001D | ±0.5% | 0.318~6 m3/h |
Table 1 Specifications for the test rig
名称 | 类型 | 准确度 | 范围 |
---|---|---|---|
温度计 | T型热电偶 | ±0.1℃ | -10~120℃ |
温湿度传感器 | Vaisala HMT120 | 温度: ±0.1℃;湿度: ±1.5% | 温度范围: -40~60℃;湿度范围:0~100% |
空气流量计 | KIMO CP300 | ±1 m3/h | 0~9999 m3/h |
电磁流量计 | KQ-LDBF-15S-T2F1-000D | ±0.5% | 0.16~2.5 m3/h |
电磁流量计 | KQ-LDBF-15S-M2F1-001D | ±0.5% | 0.318~6 m3/h |
参数 | 数值 |
---|---|
热水流量/(m3/h) | 3.9 |
冷却水流量/(m3/h) | 4.5 |
冷凝器冷却水进口温度/℃ | 27.5 |
除湿溶液流量/(m3/h) | 3.6 |
再生溶液流量/(kg/s) | 2 |
空气流量(混合溶液)/(m3/h) | 2000 |
空气流量(LiCl溶液)/(m3/h) | 2400 |
空气进口温度/℃ | 27~28 |
除湿溶液进口温度/℃ | 26~27 |
除湿再生循环流量/(kg/s) | 0.3 |
Table 2 Experimental parameters
参数 | 数值 |
---|---|
热水流量/(m3/h) | 3.9 |
冷却水流量/(m3/h) | 4.5 |
冷凝器冷却水进口温度/℃ | 27.5 |
除湿溶液流量/(m3/h) | 3.6 |
再生溶液流量/(kg/s) | 2 |
空气流量(混合溶液)/(m3/h) | 2000 |
空气流量(LiCl溶液)/(m3/h) | 2400 |
空气进口温度/℃ | 27~28 |
除湿溶液进口温度/℃ | 26~27 |
除湿再生循环流量/(kg/s) | 0.3 |
参数 | 数值 |
---|---|
热水流量/(kg/s) | 1 |
热水温度/℃ | 70 |
冷却水流量/(kg/s) | 1.5 |
冷凝器冷却水进口温度/℃ | 33 |
除湿溶液流量/(kg/s) | 0.8 |
除湿再生循环流量/(kg/s) | 0.1 |
空气流量/(kg/s) | 0.6 |
空气进口温度/℃ | 30 |
空气进口含湿量/(g/kg) | 18 |
除湿溶液进口温度/℃ | 30 |
再生溶液流量/(kg/s) | 1 |
溶液-溶液换热器效能 | 0.7 |
Table 3 Simulation parameters
参数 | 数值 |
---|---|
热水流量/(kg/s) | 1 |
热水温度/℃ | 70 |
冷却水流量/(kg/s) | 1.5 |
冷凝器冷却水进口温度/℃ | 33 |
除湿溶液流量/(kg/s) | 0.8 |
除湿再生循环流量/(kg/s) | 0.1 |
空气流量/(kg/s) | 0.6 |
空气进口温度/℃ | 30 |
空气进口含湿量/(g/kg) | 18 |
除湿溶液进口温度/℃ | 30 |
再生溶液流量/(kg/s) | 1 |
溶液-溶液换热器效能 | 0.7 |
21 | Yon H R, Cai W J, Wang Y Y, et al. Dynamic model for a novel liquid desiccant regeneration system operating in vacuum condition[J]. Energy and Buildings, 2018, 167: 69-78. |
22 | Yon H R, Cai W J, Wang Y Y, et al. Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition[J]. Applied Energy, 2018, 211: 249-258.. |
23 | 高文忠, 时亚茹, 韩笑生, 等. 混合除湿盐溶液液滴闪蒸机理[J]. 化工学报, 2012, 63(11): 3453-3459. |
Gao W Z, Shi Y R, Han X S, et al. Droplet flash evaporation of mixed dehumidification solutions[J]. CIESC Journal, 2012, 63(11): 3453-3459. | |
24 | 韩雨松, 邹同华, 邓赛峰. 不同真空度下除湿溶液再生性能的试验研究[J]. 流体机械, 2016, 44(3): 70-75. |
Han Y S, Zou T H, Deng S F. Experimental study on performance of desiccant-solution regeneration in different vacuum degree[J]. Fluid Machinery, 2016, 44(3): 70-75. | |
25 | 解鸣, 茆春俊, 吕雯, 等. 基于热管传热的除湿溶液真空再生过程实验研究[J]. 制冷学报, 2019, 40(6): 103-110. |
Xie M, Mao C J, Lv W, et al. Experimental study of the vacuum regeneration process of a dehumidifying solution based on heat pipe heat transfer[J]. Journal of Refrigeration, 2019, 40(6): 103-110. | |
26 | 彭冬根, 程小松, 李霜玲, 等. 一种新型溶液除湿装置数学模型及性能分析[J]. 太阳能学报, 2019, 40(2): 474-479. |
Peng D G, Cheng X S, Li S L, et al. Mathematical model and performance analysis of a new liquid desiccant dehumidifier[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 474-479. | |
27 | Liu X H, Jiang Y, Qu K Y. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2007, 48(2): 546-554. |
28 | Zhang F, Yin Y G, Cao B W, et al. Performance analysis of a novel dual-evaporation-temperature combined-effect absorption chiller for temperature and humidity independent control air-conditioning[J]. Energy Conversion and Management, 2022, 273: 116417. |
29 | Che C W, Yin Y G. A statistical thermodynamic model for prediction of vapor pressure of mixed liquid desiccants near saturated solubility[J]. Energy, 2019, 175: 798-809. |
1 | Yin Y G, Zhang X S, Chen Z Q. Experimental study on dehumidifier and regenerator of liquid desiccant cooling air conditioning system[J]. Building and Environment, 2007, 42(7): 2505-2511. |
2 | 成洁, 殷勇高, 张凡. 低品位热驱动混合溶液除湿降温系统性能分析[J]. 东南大学学报(自然科学版), 2019, 49(1): 148-153. |
Cheng J, Yin Y G, Zhang F. Performance analysis of liquid desiccant cooling system using mixed solution driven by low-grade heat source[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 148-153. | |
3 | Liu J, Liu X H, Zhang T. Performance comparison and exergy analysis of different flow types in internally-cooled liquid desiccant dehumidifiers (ICDs)[J]. Applied Thermal Engineering, 2018, 142: 278-291. |
4 | Longo G A, Gasparella A. Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5240-5254. |
5 | Guan B W, Zhang T, Liu J, et al. Review of internally cooled liquid desiccant air dehumidification: materials, components, systems, and performances[J]. Building and Environment, 2022, 211: 108747. |
6 | Varela R J, Yamaguchi S, Giannetti N, et al. General correlations for the heat and mass transfer coefficients in an air-solution contactor of a liquid desiccant system and an experimental case application[J]. International Journal of Heat and Mass Transfer, 2018, 120: 851-860. |
7 | Liu X H, Zhang Y, Qu K Y, et al. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant[J]. Energy Conversion and Management, 2006, 47(15/16): 2682-2692. |
8 | 关博文, 张勤灵, 张涛, 等. 溶液除湿式空气处理机组在锂电池生产厂房中的应用[J]. 暖通空调, 2022, 52(3): 100-104, 161. |
Guan B W, Zhang Q L, Zhang T, et al. Application of liquid desiccant air handling units to lithium battery production workshops[J]. Heating Ventilating & Air Conditioning, 2022, 52(3): 100-104, 161. | |
9 | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
Peng D G, Xu S H. Experimental comparison on dehumidification performance of LiCl and CaCl2 under evaporative cooling condition[J]. CIESC Journal, 2020, 71(4): 1554-1561. | |
30 | Patil K R, Chaudhari S K, Katti S S. Thermodynamic properties of aqueous solutions of lithium iodide: simplified method for predicting the enthalpies from the vapor-pressure data[J]. Applied Energy, 1991, 39(3): 189-199. |
10 | 沈子婧, 殷勇高, 张小松. 基于氯化钙溶液的混合盐溶液除湿剂物性测量[J]. 化工学报, 2016, 67(7): 3004-3009. |
Shen Z J, Yin Y G, Zhang X S. Measurement and analysis of physical properties of mixed liquid desiccants based on calcium chloride solution[J]. CIESC Journal, 2016, 67(7): 3004-3009. | |
11 | 王沐, 殷勇高, 郭枭爽, 等. 经济型多元溶液的替代方案及除湿再生性能验证[J]. 化工学报, 2018, 69(S2): 420-424. |
Wang M, Yin Y G, Guo X S, et al. Alternative scheme and dehumidification and regeneration performance validation for economic multi-component solution[J]. CIESC Journal, 2018, 69(S2): 420-424. | |
12 | Wen T, Luo Y M, Wang M, et al. Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate[J]. Renewable Energy, 2021, 167: 841-852. |
13 | Longo G A, Gasparella A. Three years experimental comparative analysis of a desiccant based air conditioning system for a flower greenhouse: assessment of different desiccants[J]. Applied Thermal Engineering, 2015, 78: 584-590. |
14 | Varela R J, Giannetti N, Saito K, et al. Experimental performance of a three-fluid desiccant contactor using a novel ionic liquid[J]. Applied Thermal Engineering, 2022, 210: 118343. |
15 | Cao B W, Yin Y G, Zhang F, et al. Experimental study on heat and mass transfer characteristics between a novel ionic liquid and air under low-humidity conditions[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123373. |
16 | Liu X H, Yi X Q, Jiang Y. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions[J]. Energy Conversion and Management, 2011, 52(1): 180-190. |
17 | Lazzarin R M, Gasparella A, Longo G A. Chemical dehumidification by liquid desiccants: theory and experiment[J]. International Journal of Refrigeration, 1999, 22(4): 334-347. |
18 | Li X W, Zhang X S, Cao R Q, et al. Progress in selecting desiccant and dehumidifier for liquid desiccant cooling system[J]. Energy and Buildings, 2012, 49: 410-418. |
19 | 童守宝, 车春文, 殷勇高. CaBr2溶液除湿再生性能及腐蚀性实验研究[J]. 东南大学学报(自然科学版), 2022, 52(3): 425-432. |
Tong S B, Che C W, Yin Y G. Experimental study on dehumidification and regeneration performance and corrosiveness of CaBr2 solution[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 425-432. | |
20 | Chen X J, Riffat S, Bai H Y, et al. Recent progress in liquid desiccant dehumidification and air-conditioning: a review[J]. Energy and Built Environment, 2020, 1(1): 106-130. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[11] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[12] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[13] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[14] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[15] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||