CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 198-205.DOI: 10.11949/0438-1157.20221590
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Limei SHEN1,2(), Boxing HU1, Yufei XIE1, Weihao ZENG1, Xiaoyu ZHANG3
Received:
2022-11-09
Revised:
2022-12-23
Online:
2023-09-27
Published:
2023-06-05
Contact:
Limei SHEN
申利梅1,2(), 胡博兴1, 谢雨霏1, 曾伟豪1, 张晓屿3
通讯作者:
申利梅
作者简介:
申利梅(1986—),女,博士,副教授,ep_shenlimei@hust.edu.cn
基金资助:
CLC Number:
Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe[J]. CIESC Journal, 2023, 74(S1): 198-205.
申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205.
1 | 张亚平, 冯全科, 余小玲. 微热管在电子器件冷却中的应用[J]. 国外电子元器件, 2006(9): 11-15. |
Zhang Y P, Feng Q K, Yu X L. Application of micro heat pipe in cooling of electronic devices[J]. Foreign Electronic Components, 2006(9): 11-15. | |
2 | Yang X, Yan Y Y, Mullen D. Recent developments of lightweight, high performance heat pipes[J]. Applied Thermal Engineering, 2012(33/34): 1-14. |
3 | 郝俊娇, 潘日, 周刚, 等. 高热流密度电子元件中热管散热技术的进展[J]. 化工进展, 2015, 34(5): 1220-1224. |
Hao J J, Pan R, Zhou G, et al. Progress of heat pipe heat dissipation technology in high heat flux electronic components[J]. Progress in Chemical Industry, 2015, 34(5): 1220-1224. | |
4 | Putra N, Yanuar, Iskandar F N. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment[J]. Experimental Thermal and Fluid Science, 2011, 35(7): 1274-1281. |
5 | Huang G W, Liu W Y, Luo Y Q, et al. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726. |
6 | Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404. |
7 | Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42: 34-40. |
8 | Chen L, Deng D X, Huang Q S, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166: 114686. |
9 | Sohel M S M, Nieto D C C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
10 | Salami B, Noori H, Mehdipour F, et al. Physical-aware predictive dynamic thermal management of multi-core processors[J]. Journal of Parallel and Distributed Computing, 2016, 95: 42-56. |
11 | Mcglen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8): 1143-1156. |
12 | Bailey C. Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools[C]//2008 10th Electronics Packaging Technology Conference. Singapore: IEEE, 2008: 527-532. |
13 | Lv L C, Li J. Micro flat heat pipes for microelectronics cooling: review[J]. Recent Patents on Mechanical Engineering, 2013, 6: 169-184. |
14 | Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
15 | Glover G, Chen Y G, Luo A, et al. Thin vapor chamber heat sink and embedded heat pipe heat sink performance evaluations[C]//2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, CA, USA: IEEE, 2009: 33-37. |
16 | Tao H Z, Zhang H, Zhuang J, et al. Experimental study of heat transfer performance in a flattened AGHP[J]. Applied Thermal Engineering, 2008, 28(14): 1699-1710. |
17 | Tang H, Weng C X, Tang Y, et al. Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure[J]. Applied Thermal Engineering, 2021, 183: 116203. |
18 | 刘昌泉, 尚炜, 赵举贵, 等. 纳米修饰吸液芯超薄平板热管的传热特性[J]. 化工学报, 2017, 68(12): 4508-4516. |
Liu C Q, Shang W, Zhao J G, et al. Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick[J]. CIESC Journal, 2017, 68(12): 4508-4516. | |
19 | Lv L C, Li J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
20 | Lee D, Byon C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122: 306-314. |
21 | Zhou G H, Li J, Lv L C. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
22 | 朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin flat plate heat pipe with sintered porous channel wick[J]. CIESC Journal, 2019, 70(4): 1349-1357. | |
23 | Zhou W J, Xie P D, Yong L, et al. Thermal performance of ultra-thin flattened heat pipes[J]. Applied Thermal Engineering, 2017, 117: 773-781. |
24 | Chen Z S, Li Y, Zhou W J, et al. Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices[J]. Energy Conversion and Management, 2019, 187: 221-231. |
25 | Lewis R, Liew L A, Xu S S, et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin, 2015, 60(7): 701-706. |
26 | 李聪. 基于不同热负荷的超薄均热板传热传质特性研究[D]. 广州: 华南理工大学, 2018. |
Li C. Study on heat and mass transfer characteristics of ultra-thin soaking plate based on different heat loads[D]. Guangzhou: South China University of Technology, 2018. | |
27 | Zu S F, Liao X N, Huang Z, et al. Visualization study on boiling heat transfer of ultra-thin flat heat pipe with single layer wire mesh wick[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121239. |
28 | 刘腾庆, 闫文韬, 杨鑫, 等. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480. |
Liu T Q, Yan W T, Yang X, et al. Research progress in enhancing heat transfer performance of flat heat pipe[J]. CIESC Journal, 2021, 72(11): 5468-5480 | |
29 | 庄骏, 徐通明, 石寿椿. 热管与热管换热器[M]. 上海: 上海交通大学出版社, 1989. |
Zhuang J, Xu T M, Shi S C. Heat Pipe and Heat Pipe Exchanger[M]. Shanghai: Shanghai Jiao Tong University Press, 1989. | |
30 | Shen L M, Xu S M, Bai Z L, et al. Experimental study on thermal and flow characteristics of metal foam heat pipe radiator[J]. International Journal of Thermal Sciences, 2021, 159: 106572. |
[1] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[2] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[3] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[4] | WANG Fei, WANG Jianmin, SHAO Shuangquan. Analysis multi-stage heat transfer process of data center cooling system from the temperature difference [J]. CIESC Journal, 2021, 72(S1): 348-355. |
[5] | Kunfeng LIANG, Guoqiang MI, Hongyu XU, Chunyan GAO, Bin DONG, Yachao LI, Moran WANG. Performance analysis and optimization of two-way thermal management system for power battery [J]. CIESC Journal, 2021, 72(8): 4146-4154. |
[6] | Lei ZHANG,Ye DAI,Xingwei CHEN,Jie ZHANG,Yang ZOU. Experimental research on influence of abnormal shape on heat transfer performance of copper-water heat pipe [J]. CIESC Journal, 2021, 72(10): 5132-5141. |
[7] | Hui NI, Zili YANG, Ke ZHONG, Ruiyang TAO, Yuqian GU. Study on optimal heating power for internally-heated ultrasonic atomization liquid desiccant regeneration system [J]. CIESC Journal, 2020, 71(3): 1035-1044. |
[8] | Yixin MA, Yu JIN, Hu ZHANG, Xian WANG, Guihua TANG. Experimental study on heat transfer performance of finned gravity heat pipe [J]. CIESC Journal, 2020, 71(2): 594-601. |
[9] | Minghan ZHU, Pengfei BAI, Yanxin HU, Jin HUANG. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick [J]. CIESC Journal, 2019, 70(4): 1349-1357. |
[10] | Xi CHEN, Yi LIN, Shuai SHAO. Influences of inclination angle and heating power on heat transfer performance of ethane pulsating heat pipe [J]. CIESC Journal, 2019, 70(4): 1383-1389. |
[11] | LIU Haichao, SHAO Shuangquan, ZHANG Hainan, TIAN Changqing. Evaporative cooling experiment of microchannel heat exchanger in loop heat pipe [J]. CIESC Journal, 2018, 69(S2): 161-166. |
[12] | LI Han, PU Wenhao, YANG Ning, MAO Yanqin, YUE Chen, ZHANG Qi. Experimental study on air-paraffin direct contact heat transfer characteristics [J]. CIESC Journal, 2018, 69(9): 3792-3798. |
[13] | ZHU Kai, YANG Zhen, LI Xueqiang, LI Hailong, WANG Yabo. Experimental study of different charging ratios on operational characteristic of new-type loop heat pipe [J]. CIESC Journal, 2018, 69(10): 4246-4252. |
[14] | LIANG Lingjiao, LIU Jinping, XU Xiongwen. Novel flat plate evaporator of loop gravity assisted heat pipe for high heat flux electronic cooling [J]. CIESC Journal, 2018, 69(10): 4231-4238. |
[15] | ZHANG Dong, LI Jinping, ZHANG Han. All operation mathematical model and thermal performance analysis on combined heating power and biogas system [J]. CIESC Journal, 2017, 68(5): 1998-2008. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 530
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 228
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||