CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1552-1564.DOI: 10.11949/0438-1157.20231301
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Ruirui WANG1(), Ying JIN2(), Yumei LIU1, Mengyue LI1, Shengwen ZHU1, Ruiyi YAN1, Ruixia LIU1()
Received:
2023-12-06
Revised:
2024-01-31
Online:
2024-06-06
Published:
2024-04-25
Contact:
Ruixia LIU
王瑞瑞1(), 金颖2(), 刘玉梅1, 李梦悦1, 朱胜文1, 闫瑞一1, 刘瑞霞1()
通讯作者:
刘瑞霞
作者简介:
王瑞瑞(1989—),女,博士,wangruirui@ipe.ac.cn基金资助:
CLC Number:
Ruirui WANG, Ying JIN, Yumei LIU, Mengyue LI, Shengwen ZHU, Ruiyi YAN, Ruixia LIU. Study on design of polymeric ionic liquids and the performance for selective oxidation of cyclohexane[J]. CIESC Journal, 2024, 75(4): 1552-1564.
王瑞瑞, 金颖, 刘玉梅, 李梦悦, 朱胜文, 闫瑞一, 刘瑞霞. 聚合离子液体设计及催化环己烷选择性氧化性能研究[J]. 化工学报, 2024, 75(4): 1552-1564.
Add to citation manager EndNote|Ris|BibTeX
VIM/g | DMF/ml | AIBN/mg |
---|---|---|
2 | 8 | 0.9 |
2 | 8 | 1.9 |
2 | 8 | 4.8 |
2 | 8 | 7.6 |
Table 1 Specific consumption of VIM and AIBN
VIM/g | DMF/ml | AIBN/mg |
---|---|---|
2 | 8 | 0.9 |
2 | 8 | 1.9 |
2 | 8 | 4.8 |
2 | 8 | 7.6 |
聚合物 | Mn | PDI | Y/% |
---|---|---|---|
PVIM-M1 | 12320 | 1.8 | 94.3 |
PVIM-M2 | 15320 | 2.2 | 93.4 |
PVIM-M3 | 16040 | 2.7 | 83.2 |
PVIM-M4 | 19830 | 2.9 | 80.9 |
Table 2 Data of polymer
聚合物 | Mn | PDI | Y/% |
---|---|---|---|
PVIM-M1 | 12320 | 1.8 | 94.3 |
PVIM-M2 | 15320 | 2.2 | 93.4 |
PVIM-M3 | 16040 | 2.7 | 83.2 |
PVIM-M4 | 19830 | 2.9 | 80.9 |
Entry | Catalysts | Con/% | Sel/% | ||||
---|---|---|---|---|---|---|---|
K | A | KA | AA | Others | |||
1 | blank | 0 | 0 | 0 | 0 | 0 | 0 |
2① | VIM | 2.8 | 51.9 | 35.4 | 87.4 | 10.1 | 2.6 |
3① | PVIM-M1 | 7.6 | 27.7 | 18.7 | 46.4 | 37.7 | 15.9 |
4① | PVIM- M2 | 8.1 | 28.1 | 21.6 | 49.7 | 31.2 | 19.1 |
5① | PVIM- M3 | 9.1 | 36.8 | 28.9 | 65.7 | 27.2 | 7.2 |
6① | PVIM- M4 | 10.9 | 35.0 | 19.7 | 54.7 | 34.3 | 11.1 |
7 ② | VIM | 4.4 | 24.3 | 16.4 | 40.7 | 40.0 | 19.3 |
8② | PVIM-M1 | 11.3 | 23.1 | 16.6 | 39.7 | 47.7 | 15.9 |
9② | PVIM- M2 | 11.9 | 34.0 | 20.7 | 54.7 | 37.2 | 7.2 |
10② | PVIM- M3 | 13.5 | 22.7 | 13.7 | 36.4 | 34.3 | 11.1 |
11② | PVIM- M4 | 12.3 | 24.4 | 16.3 | 40.7 | 41.2 | 19.2 |
Table 3 Effect of different molecular weights on cyclohexane oxidation
Entry | Catalysts | Con/% | Sel/% | ||||
---|---|---|---|---|---|---|---|
K | A | KA | AA | Others | |||
1 | blank | 0 | 0 | 0 | 0 | 0 | 0 |
2① | VIM | 2.8 | 51.9 | 35.4 | 87.4 | 10.1 | 2.6 |
3① | PVIM-M1 | 7.6 | 27.7 | 18.7 | 46.4 | 37.7 | 15.9 |
4① | PVIM- M2 | 8.1 | 28.1 | 21.6 | 49.7 | 31.2 | 19.1 |
5① | PVIM- M3 | 9.1 | 36.8 | 28.9 | 65.7 | 27.2 | 7.2 |
6① | PVIM- M4 | 10.9 | 35.0 | 19.7 | 54.7 | 34.3 | 11.1 |
7 ② | VIM | 4.4 | 24.3 | 16.4 | 40.7 | 40.0 | 19.3 |
8② | PVIM-M1 | 11.3 | 23.1 | 16.6 | 39.7 | 47.7 | 15.9 |
9② | PVIM- M2 | 11.9 | 34.0 | 20.7 | 54.7 | 37.2 | 7.2 |
10② | PVIM- M3 | 13.5 | 22.7 | 13.7 | 36.4 | 34.3 | 11.1 |
11② | PVIM- M4 | 12.3 | 24.4 | 16.3 | 40.7 | 41.2 | 19.2 |
Entry | Catalyst | Reaction conditions | Cyclohexane conversion/% | Selectivity of AA/% | Ref. |
---|---|---|---|---|---|
1 | 1% Au-Pd/TiO2 | 150℃, 1.0 MPa O2, 4 h | 21.0 | 34.0 | [ |
2 | FeALPO-31 | 130℃, 1.5 MPa air, 24 h | 7.7 | 31.3 | [ |
3 | CoCl16Pc | 70℃, 5.5 MPa O2, 8 h | 18.0 | 23.9 | [ |
4 | [(C18H37)2N(CH3)2]6Mo7O24 | 160℃, 1.0 MPa O2, 6 h | 10.2 | 87.1 | [ |
5 | CeO2 | 110℃, 2.0 MPa O2, 6 h | 18.2 | 35.0 | [ |
6 | 1% Mn-HTS | 140℃, 1.0 MPa O2, 6 h | 13.4 | 57.5 | [ |
7 | Cu-20 min/a-C3N4 | 140℃, 20.0 bar O2, 4 h | 17.7 | 55.0 | [ |
8 | Co/C3N4-0.02 | 130℃, 1.0 MPa O2, 6 h | 9.1 | 38.0 | [ |
10 | PIL-C12-100 | 130℃, 1.5 MPa O2, 2 h | 21.7 | 41.2 | this work |
Table 4 Comparison of the cyclohexane oxidation performance of catalysts in this work and other previously reported catalysts
Entry | Catalyst | Reaction conditions | Cyclohexane conversion/% | Selectivity of AA/% | Ref. |
---|---|---|---|---|---|
1 | 1% Au-Pd/TiO2 | 150℃, 1.0 MPa O2, 4 h | 21.0 | 34.0 | [ |
2 | FeALPO-31 | 130℃, 1.5 MPa air, 24 h | 7.7 | 31.3 | [ |
3 | CoCl16Pc | 70℃, 5.5 MPa O2, 8 h | 18.0 | 23.9 | [ |
4 | [(C18H37)2N(CH3)2]6Mo7O24 | 160℃, 1.0 MPa O2, 6 h | 10.2 | 87.1 | [ |
5 | CeO2 | 110℃, 2.0 MPa O2, 6 h | 18.2 | 35.0 | [ |
6 | 1% Mn-HTS | 140℃, 1.0 MPa O2, 6 h | 13.4 | 57.5 | [ |
7 | Cu-20 min/a-C3N4 | 140℃, 20.0 bar O2, 4 h | 17.7 | 55.0 | [ |
8 | Co/C3N4-0.02 | 130℃, 1.0 MPa O2, 6 h | 9.1 | 38.0 | [ |
10 | PIL-C12-100 | 130℃, 1.5 MPa O2, 2 h | 21.7 | 41.2 | this work |
1 | 刘长军, 唐盛伟, 谭平华, 等. 环己烷液相非催化/催化氧化反应动力学特性比较[J]. 化工学报, 2008, 59(8): 1992-1999. |
Liu C J, Tang S W, Tan P H, et al. Comparison of kinetic behavior of non-catalytic/catalytic liquid-phase oxidation of cyclohexane[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(8): 1992-1999. | |
2 | Schuchardt U, Cardoso D, Sercheli R, et al. Cyclohexane oxidation continues to be a challenge[J]. Applied Catalysis A: General, 2001, 211(1): 1-17. |
3 | 蹇建, 张嘉明, 佘祥, 等. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
Jian J, Zhang J M, She X, et al. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. | |
4 | Wang C H, Chen L F, Qi Z W. One-pot synthesis of gold nanoparticles embedded in silica for cyclohexane oxidation[J]. Catalysis Science & Technology, 2013, 3(4): 1123-1128. |
5 | 梁学博, 胡伯羽, 袁永军, 等. 金属卟啉催化空气氧化环己烷反应的工艺优化[J]. 化工学报, 2007, 58(3): 794-800. |
Liang X B, Hu B Y, Yuan Y J, et al. Optimization of aerobic oxidation of cyclohexane catalyzed by metalloporphyrins[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 794-800. | |
6 | Lawal N S, Ibrahim H, Bala M D. Facile peroxidation of cyclohexane catalysed by in situ generated triazole-functionalised schiff base copper complexes[J]. Catalysis Letters, 2022, 152(5): 1264-1275. |
7 | Chavan S A, Srinivas D, Ratnasamy P. Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes[J]. Journal of Catalysis, 2002, 212(1): 39-45. |
8 | Meireles A M, Guimarães A S, Querino G R, et al. Exploring manganese pyridylporphyrin isomers for cyclohexane oxidation: first-generation catalysts are better than third-generation ones[J]. Applied Organometallic Chemistry, 2021, 35(11): e6400. |
9 | Liu D C, Zhang B Q, Liu X F, et al. Cyclohexane oxidation over AFI molecular sieves: effects of Cr, Co incorporation and crystal size[J]. Catalysis Science & Technology, 2015, 5(6): 3394-3402. |
10 | Xie C J, Wang W, Yang Y P, et al. Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method[J]. Molecular Catalysis, 2020, 495: 111134. |
11 | Shen H M, Wang X L, Ning L, et al. Efficient oxidation of cycloalkanes with simultaneously increased conversion and selectivity using O2 catalyzed by metalloporphyrins and boosted by Zn(AcO)2: a practical strategy to inhibit the formation of aliphatic diacids[J]. Applied Catalysis A: General, 2021, 609: 117904. |
12 | Wan Y L, Guo Q, Wang K, et al. Efficient and selective photocatalytic oxidation of cyclohexane using O2 as oxidant in VOCl2 solution and mechanism insight[J]. Chemical Engineering Science, 2019, 203: 163-172. |
13 | Hereijgers B P C, Weckhuysen B M. Aerobic oxidation of cyclohexane by gold-based catalysts: new mechanistic insight by thorough product analysis[J]. Journal of Catalysis, 2010, 270(1): 16-25. |
14 | Guo C C, Chu M F, Liu Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents[J]. Applied Catalysis A: General, 2003, 246(2): 303-309. |
15 | Wu M Z, Zhan W C, Guo Y L, et al. An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen[J]. Applied Catalysis A: General, 2016, 523: 97-106 |
16 | Alkordi M H, Liu Y L, Larsen R W, et al. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts[J]. Journal of the American Chemical Society, 2008, 130(38): 12639-12641. |
17 | Prabu M, Sharma S, Raja A, et al. Nitric acid free cyclohexane to adipic acid production using nickel and vanadium incorporated AlPO-5 molecular sieve[J]. Molecular Catalysis, 2023, 540: 113051. |
18 | Zhang S Y, Zhuang Q, Zhang M, et al. Poly(ionic liquid) composites[J]. Chemical Society Reviews, 2020, 49(6): 1726-1755. |
19 | Yan X C, Zhang F F, Zhang H N, et al. Improving oxygen reduction performance by using protic poly(ionic liquid) as proton conductors[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6111-6117. |
20 | 陈艺飞, 王佳铭, 阮雪华, 等. 聚离子液体二氧化碳分离膜材料的研究进展[J]. 化工学报, 2021, 72(12): 6062-6072. |
Chen Y F, Wang J M, Ruan X H, et al. Research progress in poly(ionic liquids) materials for CO2 membrane separation[J]. CIESC Journal, 2021, 72(12): 6062-6072. | |
21 | Chen S X, An R, Li Y W, et al. Strategy of regulating the electrophilic/nucleophilic ability by ionic ratio in poly(ionic liquid)s to control the coupling reaction of epoxide[J]. Catalysis Science & Technology, 2021, 11(19): 6498-6506. |
22 | 吴岳峰, 曲永芳, 李大欢, 等. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998. |
Wu Y F, Qu Y F, Li D H, et al. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid[J]. CIESC Journal, 2020, 71(11): 4990-4998. | |
23 | Gou H B, Ma X F, Su Q, et al. Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO2 to cyclic carbonates[J]. Physical Chemistry Chemical Physics, 2021, 23(3): 2005-2014. |
24 | Chen S H, Li Y W, Wang Z W, et al. Poly(ionic liquid)s hollow spheres nanoreactor for enhanced cyclohexane catalytic oxidation[J]. Journal of Catalysis, 2022, 411, 135-148. |
25 | Santanakrishnan S, Hutchinson R A. Free-radical polymerization of N-vinylimidazole and quaternized vinylimidazole in aqueous solution[J]. Macromolecular Chemistry and Physics, 2013, 214(10): 1140-1146. |
26 | Bunaciu A A, Udriştioiu E G, Aboul-Enein H Y. X-Ray diffraction: instrumentation and applications[J]. Critical Reviews in Analytical Chemistry, 2015, 45(4): 289-299. |
27 | 李慧慧, 姚开胜, 赵亚南, 等. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40: 597-609. |
Li H H, Yao K S, Zhao Y N, et al. Ionic liquid controlled synthesis of Pt-Pd bimetallic nanomaterials and their catalytic hydrogen interpretation by ammonia borane water[J]. Applied Chemistry, 2023, 40: 597-609 | |
28 | An R, Chen S X, Zhang R R, et al. Synthesis of propylene glycol methyl ether catalyzed by imidazole polymer catalyst: performance evaluation, kinetics study, and process simulation[J]. Chemical Engineering Journal, 2021, 405, 126636. |
29 | Allen M H, Hemp S T, Smith A E, et al. Controlled radical polymerization of 4-vinylimidazole[J]. Macromolecules, 2012, 45(9): 3669-3676. |
30 | Tang C W, Wang C B, Chien S H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS[J]. Thermochimica Acta, 2008, 473(1/2): 68-73. |
31 | Silva A R, Mourão T, Rocha J. Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands[J]. Catalysis Today, 2013, 203: 81-86. |
32 | Uno K, Tsutsumi O. Crystal structure and phase transition behavior of dioctadecyldimethylammonium chloride monohydrate[J]. Molecular Crystals and Liquid Crystals, 2012, 563(1): 58-66. |
33 | Gorjian H, Fahim H, Ghaffari Khaligh N. Poly(N-vinylimidazole): a biocompatible and biodegradable functional polymer, metal-free, and highly recyclable heterogeneous catalyst for the mechanochemical synthesis of oximes[J]. Turkish Journal of Chemistry, 2021, 45(6): 2007-2012. |
34 | Alshammari A, Kalevaru V, Martin A. Bimetallic catalysts containing gold and palladium for environmentally important reactions[J]. Catalysts, 2016, 6(7): 97. |
35 | Dugal M, Sankar G, Raja R, et al. Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane[J]. Angewandte Chemie International Edition, 2000, 39(13): 2310-2313. |
36 | Raja R, Ratnasamy P. Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites[J]. Catalysis Letters, 1997, 48(1/2): 1-10. |
37 | Lv H Y, Ren W Z, Liu P F, et al. One-step aerobic oxidation of cyclohexane to adipic acid using an Anderson-type catalyst [(C18H37)2N(CH3)2]6Mo7O24 [J]. Applied Catalysis A: General, 2012, 441/442: 136-141. |
38 | Dandapat S, Rao J L, Likhar P R, et al. One-step production of adipic acid from cyclohexane over stable oxides (CeO2 & ZrO2) using O2: enhanced oxidation activity in acidic medium[J]. Catalysis Communications, 2022, 172: 106555. |
39 | Zou G Q, Zhong W Z, Xu Q, et al. Oxidation of cyclohexane to adipic acid catalyzed by Mn-doped titanosilicate with hollow structure[J]. Catalysis Communications, 2015, 58: 46-52. |
40 | Shahzeydi A, Ghiaci M, Farrokhpour H, et al. Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane[J]. Chemical Engineering Journal, 2019, 370: 1310-1321. |
41 | Yuan E X, Zhou M X, Jian P M, et al. Atomically dispersed Co/C3N4 for boosting aerobic cyclohexane oxidation[J].Applied Surface Science, 2023, 613: 155886. |
42 | Cremer T, Kolbeck C, Lovelock K R J, et al. Towards a molecular understanding of cation-anion interactions: probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations[J]. Chemistry, 2010, 16(30): 9018-9033. |
43 | Yu H, Peng F, Tan J, et al. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(17): 3978-3982. |
44 | Wang Z H, Wu Y C, Wu C C, et al. Electrophilic oxygen on defect-rich carbon nanotubes for selective oxidation of cyclohexane[J]. Catalysis Science & Technology, 2020, 10(2): 332-336. |
45 | Su K Y, Zhang C F, Wang Y H, et al. Unveiling the highly disordered NbO6 units as electron-transfer sites in Nb2O5 photocatalysis with N-hydroxyphthalimide under visible light irradiation[J]. Chinese Journal of Catalysis, 2022, 43(7): 1894-1905. |
46 | Fu Y, Zhan W C, Guo Y L, et al. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane[J]. Green Energy and Environment, 2017, 2: 142-150. |
[1] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[2] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[3] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[4] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[5] | Zhuoyu LI, Peng JIN, Xiaoyan CHEN, Zeyu ZHAO, Qinghong WANG, Chunmao CHEN, Yali ZHAN. Effect and mechanism on the degradation of aqueous bisphenol A by zero valent iron activated peroxyacetic acid system [J]. CIESC Journal, 2024, 75(3): 987-999. |
[6] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[7] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[8] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[9] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[10] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[11] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[12] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[13] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[14] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[15] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||