CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 292-301.DOI: 10.11949/0438-1157.20230848
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xuejie WANG(), Guoqing CUI(), Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG(), Chunming XU()
Received:
2023-08-17
Revised:
2023-12-12
Online:
2024-03-11
Published:
2024-01-25
Contact:
Guiyuan JIANG, Chunming XU
王雪杰(), 崔国庆(), 王文涵, 杨扬, 王淙恺, 姜桂元(), 徐春明()
通讯作者:
姜桂元,徐春明
作者简介:
王雪杰(1996—),女,博士研究生,sddzwangxuejie@163.com基金资助:
CLC Number:
Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating[J]. CIESC Journal, 2024, 75(1): 292-301.
王雪杰, 崔国庆, 王文涵, 杨扬, 王淙恺, 姜桂元, 徐春明. 电内加热Pt/NPC催化剂高效催化甲基环己烷脱氢反应研究[J]. 化工学报, 2024, 75(1): 292-301.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 N2 adsorption-desorption isotherms and pore size distribution curves, XRD patterns, Raman spectra, TEM images and Pt particle size distribution of Pt/NPC based catalysts
样品 | SBET/(m2·g-1) | dBJH/nm | Pt质量分数/% | ID/IG | 分散度/% | N含量/% | [Pt2+/(Pt0+Pt2+)]/% |
---|---|---|---|---|---|---|---|
Pt/NPC-450 | 1254 | 1.9 | 0.96 | 1.07 | 62.5 | 1.68 | 50.1 |
Pt/NPC-550 | 1296 | 2.0 | 0.98 | 1.10 | 65.3 | 1.93 | 55.4 |
Pt/NPC-650 | 1250 | 1.9 | 1.03 | 1.08 | 64.2 | 1.86 | 53.0 |
Pt/NPC-750 | 1238 | 1.9 | 1.04 | 1.05 | 61.9 | 1.69 | 48.2 |
Table 1 Textural parameters of Pt/NPC based catalysts
样品 | SBET/(m2·g-1) | dBJH/nm | Pt质量分数/% | ID/IG | 分散度/% | N含量/% | [Pt2+/(Pt0+Pt2+)]/% |
---|---|---|---|---|---|---|---|
Pt/NPC-450 | 1254 | 1.9 | 0.96 | 1.07 | 62.5 | 1.68 | 50.1 |
Pt/NPC-550 | 1296 | 2.0 | 0.98 | 1.10 | 65.3 | 1.93 | 55.4 |
Pt/NPC-650 | 1250 | 1.9 | 1.03 | 1.08 | 64.2 | 1.86 | 53.0 |
Pt/NPC-750 | 1238 | 1.9 | 1.04 | 1.05 | 61.9 | 1.69 | 48.2 |
催化剂 | 温度/℃ | MCH进料量/(ml·min-1) | Pt负载量/ %(质量分数) | MCH转化率/% | 释氢速率/ (mmol·g-1·min-1) | 文献 |
---|---|---|---|---|---|---|
Pt/NPC-550-CEH | 300 | 0.05 | 1.00 | 18.0 | 1086.0 | this work |
Pt/NPC-550-IEH | 300 | 0.05 | 1.00 | 60.0 | 3620.0 | this work |
Pt/PTC-S | 300 | 0.03 | 0.20 | 84.3 | 991.5 | [ |
Pt/Al2O3/FF-IEH | 300 | 0.02 | 0.69 | 59.0 | 2060.0 | [ |
Pt/CS | 320 | 0.03 | 0.37 | 87.0 | 575.0 | [ |
Pt/SBA-15 | 300 | 0.03 | 3.00 | 65.0 | 314.0 | [ |
Pt/Ce-Mg-Al-O | 300 | 0.10 | 0.35 | 49.8 | 686.9 | [ |
Pt/CeO2 | 350 | 0.05 | 0.15 | 23.3 | 2509 | [ |
Pt3(Fe0.75Zn0.25)/SiO2 | 350 | 0.06 | 3.00 | 71.2 | 757.0 | [ |
Pt/pyrolytic waste activated carbon | 300 | 0.03 | 0.40 | 95.0 | 307.0 | [ |
Pt/coconut activated carbon | 300 | 0.03 | 1.00 | 42.0 | 608.2 | [ |
Pt/GAC-S | 300 | 0.03 | 0.20 | 63.0 | 741.1 | [ |
Table 2 Comparison of MCH dehydrogenation over Pt/NPC-550 catalyst and other reported Pt-based catalysts
催化剂 | 温度/℃ | MCH进料量/(ml·min-1) | Pt负载量/ %(质量分数) | MCH转化率/% | 释氢速率/ (mmol·g-1·min-1) | 文献 |
---|---|---|---|---|---|---|
Pt/NPC-550-CEH | 300 | 0.05 | 1.00 | 18.0 | 1086.0 | this work |
Pt/NPC-550-IEH | 300 | 0.05 | 1.00 | 60.0 | 3620.0 | this work |
Pt/PTC-S | 300 | 0.03 | 0.20 | 84.3 | 991.5 | [ |
Pt/Al2O3/FF-IEH | 300 | 0.02 | 0.69 | 59.0 | 2060.0 | [ |
Pt/CS | 320 | 0.03 | 0.37 | 87.0 | 575.0 | [ |
Pt/SBA-15 | 300 | 0.03 | 3.00 | 65.0 | 314.0 | [ |
Pt/Ce-Mg-Al-O | 300 | 0.10 | 0.35 | 49.8 | 686.9 | [ |
Pt/CeO2 | 350 | 0.05 | 0.15 | 23.3 | 2509 | [ |
Pt3(Fe0.75Zn0.25)/SiO2 | 350 | 0.06 | 3.00 | 71.2 | 757.0 | [ |
Pt/pyrolytic waste activated carbon | 300 | 0.03 | 0.40 | 95.0 | 307.0 | [ |
Pt/coconut activated carbon | 300 | 0.03 | 1.00 | 42.0 | 608.2 | [ |
Pt/GAC-S | 300 | 0.03 | 0.20 | 63.0 | 741.1 | [ |
1 | Sun Q M, Wang N, Xu Q, et al. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials[J]. Advanced Materials, 2020, 32(44): 2001818-2001860. |
2 | Wang C L, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation[J]. Chemical Society Reviews, 2021, 50(5): 3437-3484. |
3 | Zheng J, Zhou H, Wang C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage[J]. Energy Storage Materials, 2021, 35: 695-722. |
4 | Meng J C, Zhou F, Ma H X, et al. A review of catalysts for methylcyclohexane dehydrogenation[J]. Topics in Catalysis, 2021, 64(7): 509-520. |
5 | Preuster P, Papp C, Wasserscheid P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy[J]. Accounts of Chemical Research, 2017, 50(1): 74-85. |
6 | Acharya D, Ng D, Xie Z L. Recent advances in catalysts and membranes for MCH dehydrogenation: a mini review[J]. Membranes, 2021, 11(12): 955-975. |
7 | Ye H L, Wang T C, Liu S X, et al. Fabrication of Pt-loaded catalysts supported on the functionalized pyrolytic activated carbon derived from waste tires for the high performance dehydrogenation of methylcyclohexane and hydrogen production[J]. Catalysts, 2022, 12(2): 211-223. |
8 | Yang X, Song Y, Cao T T, et al. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane[J]. Molecular Catalysis, 2020, 492: 110971-110979. |
9 | Zhang X T, He N, Lin L, et al. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: methylcyclohexane-toluene-hydrogen cycle[J]. Catalysis Science & Technology, 2020, 10(4): 1171-1181. |
10 | Murata K, Kurimoto N, Yamamoto Y, et al. Structure-property relationships of Pt-Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane[J]. ACS Applied Nano Materials, 2021, 4(5): 4532-4541. |
11 | Li Y M, Liu Z Y, Zhang Q Y, et al. Influence of carbonization temperature on cobalt-based nitrogen-doped carbon nanopolyhedra derived from ZIF-67 for nonoxidative propane dehydrogenation[J]. Petroleum Science, 2023, 20(1): 559-568. |
12 | 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932. |
Li Y M, Liu Z Y, Zhang Q Y, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis[J]. CIESC Journal, 2021, 72(8): 3919-3932. | |
13 | 孙明慧, 陈静圆, 肖南, 等. 煤基富氮层级多孔碳制备及其催化脱硫性能[J]. 化工学报, 2020, 71(2): 660-668. |
Sun M H, Chen J Y, Xiao N, et al. Preparation of hierarchical nitrogen-rich porous carbon from coal tar for catalytic desulfurization[J]. CIESC Journal, 2020, 71(2): 660-668. | |
14 | Zhou Y L, Wei F F, Qi H F, et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation[J]. Nature Catalysis, 2022, 5(12): 1145-1156. |
15 | Li Y M, Zhang Q Y, Yu X, et al. Efficient Fe based catalyst with nitrogen doped carbon material modification for propane non-oxidative dehydrogenation[J]. Carbon Resources Conversion, 2020, 3: 140-144. |
16 | Dou L G, Yan C J, Zhong L S, et al. Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating[J]. Chemical Communications, 2020, 56(2): 205-208. |
17 | Badakhsh A, Kwak Y, Lee Y J, et al. A compact catalytic foam reactor for decomposition of ammonia by the Joule-heating mechanism[J]. Chemical Engineering Journal, 2021, 426: 130802-130809. |
18 | Zhang Y X, Mei X Y, Wang J, et al. A prototype for catalytic removal of formaldehyde and CO in a compact air cleaner powered by portable electricity[J]. Materials Advances, 2020, 1(9): 3582-3588. |
19 | Mei X Y, Zhu X B, Zhang Y X, et al. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts[J]. Nature Catalysis, 2021, 4(12): 1002-1011. |
20 | Liu K, Li K, Xu D J, et al. Catalytic combustion of lean methane assisted by electric field over Pd/Co3O4 catalysts at low temperature[J]. Journal of Shanghai Jiaotong University (Science), 2018, 23(1): 8-17. |
21 | Wang K, Zeng Y J, Lin W Z, et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths[J]. Carbon, 2020, 167: 709-717. |
22 | Wismann S T, Engbæk J S, Vendelbo S B, et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production[J]. Science, 2019, 364(6442): 756-759. |
23 | Wang W H, Cui G Q, Yan C J, et al. Boosting methylcyclohexane dehydrogenation over Pt-based structured catalysts by internal electric heating[J]. Nano Research, 2023, 16: 12215-12222. |
24 | Dong Q, Yao Y G, Cheng S C, et al. Programmable heating and quenching for efficient thermochemical synthesis[J]. Nature, 2022, 605(7910): 470-476. |
25 | Wang X J, Song X Y, Li S P, et al. High capacitive energy storage of nest-like porous graphene microspheres electrode with high mass loading[J]. ChemSusChem, 2019, 12(18): 4249-4256. |
26 | Sun Y H, Zhang G J, Xu Y, et al. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: effect of nitrogen doping content and calcination temperature[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16424-16435. |
27 | Li S P, Yang Z P, Wu M Z, et al. Extraordinary compatibility to mass loading and rate capability of hierarchically porous carbon nanorods electrode derived from the waste tire pyrolysis oil[J]. Energy & Environmental Materials, 2022, 5(4): 1238-1250. |
28 | Wang X J, Song X Y, Li S P, et al. The cyclic regeneration of templates during the preparation of mesoporous graphene fibers with excellent capacitive behavior in the fluidized-bed chemical vapor deposition process[J]. Chemical Engineering Science, 2020, 221: 115657-115668. |
29 | Wang J, Liu H, Fan S G, et al. Size-dependent catalytic cyclohexane dehydrogenation with platinum nanoparticles on nitrogen-doped carbon[J]. Energy & Fuels, 2020, 34(12): 16542-16551. |
30 | Cao Y Q, Fu W Z, Ren Z H, et al. Tailoring electronic properties and kinetics behaviors of Pd/N-CNTs catalysts for selective hydrogenation of acetylene[J]. AIChE Journal, 2020, 66(4): 16857-16868. |
31 | Wang F, Jiang J C, Wang K, et al. Hydrotreatment of lipid model for diesel-like alkane using nitrogen-doped mesoporous carbon-supported molybdenum carbide[J]. Applied Catalysis B: Environmental, 2019, 242: 150-160. |
32 | Zhong G Y, Xu S R, Chao J, et al. Biomass-derived nitrogen-doped porous carbons activated by magnesium chloride as ultrahigh-performance supercapacitors[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21756-21767. |
33 | Li A T, Yao D W, Yang Y W, et al. Active Cu0-Cu σ + sites for the hydrogenation of carbon-oxygen bonds over Cu/CeO2 catalysts[J]. ACS Catalysis, 2022, 12(2): 1315-1325. |
34 | Ouyang S C, Wang L W, Du X W, et al. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions[J]. RSC Advances, 2016, 6(55): 49777-49781. |
35 | Chen A B, Zhang W P, Li X Y, et al. One-pot encapsulation of Pt nanoparticles into the mesochannels of SBA-15 and their catalytic dehydrogenation of methylcyclohexane[J]. Catalysis Letters, 2007, 119(1): 159-164. |
36 | Wang W Y, Miao L, Wu K, et al. Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/Ce-Mg-Al-O catalysts derived from their layered double hydroxides[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2918-2925. |
37 | Chen L M, Verma P, Hou K P, et al. Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single site platinum catalyst[J]. Nature Communications, 2022, 13(1): 1092-1101. |
38 | Nakaya Y, Miyazaki M, Yamazoe S, et al. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy[J]. ACS Catalysis, 2020, 10(9): 5163-5172. |
39 | Zhang C, Liang X Q, Liu S X. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char[J]. International Journal of Hydrogen Energy, 2011, 36(15): 8902-8907. |
40 | Li X Y, Ma D, Bao X H. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methylcyclohexane dehydrogenation[J]. Chinese Journal of Catalysis, 2008, 29(3): 259-263. |
41 | Ye H L, Liu S X, Zhang C, et al. Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon[J]. RSC Advances, 2021, 11(47): 29287-29297. |
42 | Takise K, Sato A, Ogo S, et al. Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics[J]. RSC Advances, 2019, 9(48): 27743-27748. |
[1] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[2] | Xinyu WANG, Yongtao WANG, Jia YAO, Haoran LI. Progress in the application of electron paramagnetic resonance in fundamental chemical engineering research [J]. CIESC Journal, 2024, 75(1): 74-82. |
[3] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[4] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[5] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[6] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[7] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[8] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[11] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[12] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[13] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[14] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[15] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||