CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1870-1881.DOI: 10.11949/0438-1157.20231015
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Hansong QIN1(), Guoliang LI2, Hao YAN2(), Xiang FENG2, Yibin LIU2, Xiaobo CHEN2, Chaohe YANG2
Received:
2023-09-27
Revised:
2024-01-11
Online:
2024-06-25
Published:
2024-05-25
Contact:
Hao YAN
秦晗淞1(), 李国梁2, 闫昊2(), 冯翔2, 刘熠斌2, 陈小博2, 杨朝合2
通讯作者:
闫昊
作者简介:
秦晗淞(1994—),男,硕士,工程师,qinhansong.ripp@sinopec.com
基金资助:
CLC Number:
Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite[J]. CIESC Journal, 2024, 75(5): 1870-1881.
秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881.
Add to citation manager EndNote|Ris|BibTeX
参数 | 实验值 | 模拟值 |
---|---|---|
孔径/nm | 1.6,3.0 | 1.5,3.0 |
硅铝比 | 12.5 | 12.5 |
Table 1 Physical properties of hierarchical ZSM-5 zeolite model
参数 | 实验值 | 模拟值 |
---|---|---|
孔径/nm | 1.6,3.0 | 1.5,3.0 |
硅铝比 | 12.5 | 12.5 |
反应物种 | Ds×1010/(m2/s) | 温度/℃ | 文献 |
---|---|---|---|
丙烯 | 100 | 280 | [ |
丁烯 | 109 | 400 | [ |
0.0001 | 2~27 | [ | |
苯 | 0.74±0.20 | 427 | [ |
0.0001~0.01 | 50~100 | [ | |
甲苯 | 0.000065~0.000247 | 100~200 | [ |
0.097 | 400 | [ | |
二甲苯 | 0.0000035 | 210 | [ |
1.96 | 400 | [ | |
0.00004~0.000068 | 100~200 | [ |
Table 2 Diffusion coefficients of reactive species in microporous ZSM-5 zeolite
反应物种 | Ds×1010/(m2/s) | 温度/℃ | 文献 |
---|---|---|---|
丙烯 | 100 | 280 | [ |
丁烯 | 109 | 400 | [ |
0.0001 | 2~27 | [ | |
苯 | 0.74±0.20 | 427 | [ |
0.0001~0.01 | 50~100 | [ | |
甲苯 | 0.000065~0.000247 | 100~200 | [ |
0.097 | 400 | [ | |
二甲苯 | 0.0000035 | 210 | [ |
1.96 | 400 | [ | |
0.00004~0.000068 | 100~200 | [ |
产物 | Ds×108/(m2/s) | D0×107/(m2/s) | ED/ (kJ/mol) | R2/% | ||
---|---|---|---|---|---|---|
400℃ | 500℃ | 600℃ | ||||
丙烯 | 1.56 | 2.67 | 3.89 | 8.48 | 1.17 | 99.95 |
丁烯 | 0.77 | 2.05 | 3.07 | 33.50 | 1.77 | 99.73 |
苯 | 0.81 | 1.24 | 1.65 | 1.84 | 0.91 | 99.85 |
甲苯 | 0.62 | 1.18 | 1.48 | 2.97 | 1.12 | 98.54 |
二甲苯 | 0.76 | 1.23 | 1.50 | 1.56 | 0.88 | 97.64 |
Table 3 Ds and Arrhenius parameters of product molecules in hierarchical ZSM-5 zeolite at different temperatures
产物 | Ds×108/(m2/s) | D0×107/(m2/s) | ED/ (kJ/mol) | R2/% | ||
---|---|---|---|---|---|---|
400℃ | 500℃ | 600℃ | ||||
丙烯 | 1.56 | 2.67 | 3.89 | 8.48 | 1.17 | 99.95 |
丁烯 | 0.77 | 2.05 | 3.07 | 33.50 | 1.77 | 99.73 |
苯 | 0.81 | 1.24 | 1.65 | 1.84 | 0.91 | 99.85 |
甲苯 | 0.62 | 1.18 | 1.48 | 2.97 | 1.12 | 98.54 |
二甲苯 | 0.76 | 1.23 | 1.50 | 1.56 | 0.88 | 97.64 |
1 | Zhang J, Wu Z, Wu Y F, et al. Catalytic cracking of fatty acid methyl esters for the production of green aromatics using Zn-modified HZSM-5 catalysts[J]. Energy & Fuels, 2022, 36(13): 6922-6938. |
2 | Liu S, Guo Y Q, Sun P Y, et al. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1920. |
3 | Atabani A E, Silitonga A S, Badruddin I A, et al. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2070-2093. |
4 | Chen X B, An Z Y, Wang Y W, et al. Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment[J]. Fuel, 2021, 290: 119798. |
5 | Ishihara A, Takemoto K, Hashimoto T. Aromatics formation by dehydrocyclization-cracking of methyl oleate using ZnZSM-5-alumina composite-supported NiMo sulfide catalysts[J]. Fuel, 2021, 289: 119885. |
6 | Katikaneni S P R, Adjaye J D, Bakhshi N N. Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts[J]. The Canadian Journal of Chemical Engineering, 1995, 73(4): 484-497. |
7 | Coumans A E, Hensen E J M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide[J]. Applied Catalysis B: Environmental, 2017, 201: 290-301. |
8 | Bayat A, Sadrameli S M, Towfighi J. Production of green aromatics via catalytic cracking of Canola Oil Methyl Ester (CME) using HZSM-5 catalyst with different Si/Al ratios[J]. Fuel, 2016, 180: 244-255. |
9 | Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821. |
10 | 安志远. 介孔-中空ZSM-5分子筛的制备及其催化脂肪酸甲酯多产芳烃的研究[D]. 东营: 中国石油大学(华东), 2020. |
An Z Y. Preparation of mesoporous-hollow ZSM-5 zeolites and catalytic aromatic production from fatty acid methyl ester[D].Dongying: China University of Petroleum, 2020. | |
11 | 梁五更. 沸石分子筛中的扩散及其形状选择反应的研究[D]. 北京: 中国科学院山西煤炭化学研究所, 1990. |
Liang W G. Study on diffusion and shape selection reaction in zeolite molecular sieve[D].Beijing: Institute of Coal Chemistry, Chinese Academy of Sciences, 1990. | |
12 | 黄振兴. 活性炭技术基础[M]. 北京: 兵器工业出版社, 2006. |
Huang Z X. Technical Basis of Activated Carbon[M]. Beijing: The Publishing House of Ordnance Industry, 2006. | |
13 | 李先明, 刘姝, 王晓宁. 吸附扩散现象的研究现状及展望[J]. 辽宁石油化工大学学报, 2018, 38(2): 20-25. |
Li X M, Liu S, Wang X N. Research status and prospect of adsorption and diffusion[J]. Journal of Liaoning Shihua University, 2018, 38(2): 20-25. | |
14 | Klemm E, Emig G. A method for the determination of diffusion coefficients in product-shape-selective catalysis on zeolites under reaction conditions[J]. Chemical Engineering Science, 1997, 52(23): 4329-4344. |
15 | Smit B, Maesen T L. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity[J]. Chemical Reviews, 2008, 108(10): 4125-4184. |
16 | Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344. |
17 | Liu Z Q, Chu Y Y, Tang X M, et al. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22872-22882. |
18 | Bu L T, Nimlos M R, Robichaud D J, et al. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite[J]. Catalysis Today, 2018, 312: 73-81. |
19 | Huang L, Chen D, Liu J Q, et al. Aldol condensation reaction in hierarchical ZSM-5 zeolite: a molecular dynamics simulation[J]. Microporous and Mesoporous Materials, 2023, 348: 112393. |
20 | 袁家敏, 刘志强, 郑安民. 分子筛限域扩散机制研究[J]. 化学反应工程与工艺, 2022, 38(2): 175-192. |
Yuan J M, Liu Z Q, Zheng A M. Diffusion mechanism in confined space of zeolite[J]. Chemical Reaction Engineering and Technology, 2022, 38(2): 175-192. | |
21 | Fu D L, Erik Maris J J, Stanciakova K, et al. Unravelling channel structure-diffusivity relationships in zeolite ZSM-5 at the single-molecule level[J]. Angewandte Chemie (International Ed. in English), 2022, 61(5): e202114388. |
22 | Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5[J]. Catalysis Letters, 1991, 11(2): 209-217. |
23 | Gonzales N O, Bell A T, Chakraborty A K. Density functional theory calculations of the effects of local composition and defect structure on the proton affinity of H-ZSM-5[J]. The Journal of Physical Chemistry B, 1997, 101(48): 10058-10064. |
24 | Hansen N, Kerber T, Sauer J, et al. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study[J]. Journal of the American Chemical Society, 2010, 132(33): 11525-11538. |
25 | Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39: 92-96. |
26 | Kleestorfer K, Vinek H, Jentys A. Structure simulation of MCM-41 type materials[J]. Journal of Molecular Catalysis A: Chemical, 2001, 166(1): 53-57. |
27 | Akkermans R L C, Spenley N A, Robertson S H. Monte Carlo methods in Materials Studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164. |
28 | 党宇, 丁雪, 刘熠斌, 等. 吲哚在FAU分子筛中吸附行为的分子模拟研究[J]. 石油炼制与化工, 2017, 48(12): 25-32. |
Dang Y, Ding X, Liu Y B, et al. Molecular simulation of adsorption behavior of indole in FAU zeolites[J]. Petroleum Processing and Petrochemicals, 2017, 48(12): 25-32. | |
29 | 党宇. 多环芳烃在γ-Al2O3上吸附和扩散的分子模拟[D]. 东营: 中国石油大学(华东), 2019. |
Dang Y. Molecular simulation of adsorption and diffusion of polycyclic aromatic hydrocarbons on γ-Al2O3 [D]. Dongying: China University of Petroleum, 2019. | |
30 | Dang Y, Yao Y, Liu Y B, et al. Diffusion properties of aromatic hydrocarbons in mesoporous alumina: a molecular dynamics study[J]. Chemical Engineering Science, 2019, 204: 110-117. |
31 | Duan J D, Chen W, Wang C T, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
32 | 陈丹. 分子筛限域孔道内扩散行为对产物选择性影响的分子动力学研究[D]. 武汉: 武汉工程大学, 2022. |
Chen D. Molecular dynamics study of the effect of zeolite diffusion on product selectivity of confined channel in zeolite[D].Wuhan: Wuhan Institute of Technology, 2022. | |
33 | Yan Z G, Chen D, Huang L, et al. A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2022, 337: 111926. |
34 | 韩明汉, 尹秀艳, 金涌, 等. 改进的ZLC数据处理法: 计算芳烃在ZSM-5晶内扩散系数[J]. 化工学报, 2000, 51(1): 126-129. |
Han M H, Yin X Y, Jin Y, et al. Diffusion of aromatic hydrocarbon in ZSM-5 calculated by improved data treatment of zero length column method[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(1): 126-129. | |
35 | 王斐, 汪文川, 黄世萍, 等. 正丁烷和丁烯-1在不同Si/Al比ZSM-5分子筛上的吸附和扩散行为[J]. 过程工程学报, 2007, 7(4): 661-667. |
Wang F, Wang W C, Huang S P, et al. Adsorption and diffusion behavior of n-butane and butene-1 on ZSM-5 zeolite with different Si/Al ratios and temperatures[J]. The Chinese Journal of Process Engineering, 2007, 7(4): 661-667. | |
36 | 梁五更, 陈诵英, 彭少逸. 芳烃在ZSM-5中吸附和脱附扩散过程的研究[J]. 燃料化学学报, 1991, 19(2): 114-119. |
Liang W G, Chen S Y, Peng S Y. Diffusion of aromatics in adsorption and desorption processes in zsm-5[J]. Journal of Fuel Chemistry and Technology, 1991, 19(2): 114-119. | |
37 | 梁五更, 陈诵英, 彭少逸. 用迎头色谱法测量分子筛中的扩散系数(Ⅱ):苯在M-SiZSM-5中扩散的研究[J]. 石油化工, 1991, 20(4): 268-271. |
Liang W G, Chen S Y, Peng S Y. Measurement of diffusivity in zeolite molecular sieves using frontal gas chromatographic method (Ⅱ): Diffusion of benzene in M-Si-ZSM-5 molecular sieves[J]. Petrochemical Technology, 1991, 20(4): 268-271. | |
38 | 梁五更, 陈诵英, 彭少逸. 苯在ZSM-5分子筛中扩散的研究[J]. 石油化工, 1990, 19(11): 745-748. |
Liang W G, Chen S Y, Peng S Y. Diffusion of benzene in ZSM-5 molecular sieve[J]. Petrochemical Technology, 1990, 19(11): 745-748. | |
39 | Liu Q, He P P, Qian X C, et al. Enhanced CO2 adsorption performance on hierarchical porous ZSM-5 zeolite[J]. Energy & Fuels, 2017, 31(12): 13933-13941. |
40 | 党宇, 李瑞英, 闫昊, 等. 不同碳数脂肪酸甲酯在HZSM-5分子筛中吸附行为的分子模拟[J]. 石油学报(石油加工), 2020, 36(3): 543-550. |
Dang Y, Li R Y, Yan H, et al. Molecular simulations of adsorption of linear fatty acid methyl esters with different carbon numbers in HZSM-5 zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 543-550. | |
41 | Gao S S, Liu Z Q, Xu S T, et al. Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy[J]. Journal of Catalysis, 2019, 377: 51-62. |
42 | 党宇, 杨晓东, 刘熠斌, 等. 噻吩、吡咯、呋喃在H-FAU分子筛中吸附和扩散行为的分子模拟[J]. 石油学报(石油加工), 2019, 35(5): 911-919. |
Dang Y, Yang X D, Liu Y B, et al. Molecular simulation of adsorption and diffusion of thiophene, pyrrole and furan in H-FAU zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 911-919. | |
43 | Keyvanloo Z, Nakhaei Pour A, Moosavi F, et al. Molecular dynamic simulation studies of adsorption and diffusion behaviors of methanol and ethanol through ZSM-5 zeolite[J]. Journal of Molecular Graphics & Modelling, 2022, 110: 108048. |
44 | Liu Z Q, Yuan J M, van Baten J M, et al. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites[J]. Science Advances, 2021, 7(11): eabf0775. |
45 | Fu D L, van der Heijden O, Stanciakova K, et al. Disentangling reaction processes of zeolites within single-oriented channels[J]. Angewandte Chemie International Edition, 2020, 59(36): 15502-15506. |
46 | 马会霞, 周峰, 武光, 等. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207. |
Ma H X, Zhou F, Wu G, et al. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. CIESC Journal, 2020, 71(11): 5200-5207. | |
47 | 朱勇晨, 李小华, 张小雷, 等. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803. |
Zhu Y C, Li X H, Zhang X L, et al. Study on regeneration of La modified multistage pore HZSM-5 by NTP and catalytic upgrading of bio-oil[J]. CIESC Journal, 2019, 70(5): 1795-1803. |
[1] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
[2] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[3] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[4] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[5] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[6] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[7] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[8] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[9] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[10] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[11] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[12] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[13] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[14] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[15] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||