CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1855-1869.DOI: 10.11949/0438-1157.20231384
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jinhong MO1(), Xue HAN1, Yixiang ZHU1, Jing LI2, Xuyu WANG2(), Hongbing JI1,2,3()
Received:
2023-12-28
Revised:
2024-02-29
Online:
2024-06-25
Published:
2024-05-25
Contact:
Xuyu WANG, Hongbing JI
莫锦洪1(), 韩雪1, 朱毅翔1, 李菁2, 王旭裕2(), 纪红兵1,2,3()
通讯作者:
王旭裕,纪红兵
作者简介:
莫锦洪(1994—),男,硕士研究生,1056732442@qq.com
基金资助:
CLC Number:
Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins[J]. CIESC Journal, 2024, 75(5): 1855-1869.
莫锦洪, 韩雪, 朱毅翔, 李菁, 王旭裕, 纪红兵. Pt-Ga/CeO2-ZrO2-Al2O3脱氢裂解双功能催化剂用于正丁烷催化制烯烃研究[J]. 化工学报, 2024, 75(5): 1855-1869.
Add to citation manager EndNote|Ris|BibTeX
文献 | 催化剂 | Pt负载量(质量分数)/% | 质量/g | 反应温度/℃ | 质量空速/h-1 | 转化率/% | 烯烃选择性/% |
---|---|---|---|---|---|---|---|
[ | ADDINPt-Sn/ZSM-5(300) | 0.5 | — | 585 | 3.0 | 38.7 | 约90 |
[ | Pt-0.1ZnO@ZSM-5 | 0.5 | 0.3 | 625 | 0.5 | 约100 | 75 |
[ | ADDINPt/10TiO2/ZSM-5 | 1.0 | 0.3 | 625 | — | 76.1 | 67 |
[ | Pt-Sn/SAPO-34 | 0.5 | — | 585 | 2.8 | 36 | 约92 |
[ | EG-2 | 0.8 | 0.1 | 500 | 54.3 | 约20 | >97 |
[ | Pd-Pt/Al | 1.0 | 0.25 | 600 | 24.9 | 50 | 84 |
[ | Pt/ND@G | 1.0 | — | 450 | 24.0 | 约25 | >95 |
[ | PtSn/Sp-Zn-C | 0.3 | 0.2 | 530 | 6.5 | 约28 | 约96 |
[ | Pt/CNP | 0.3 | 0.2 | 530 | 6.5 | 29 | 92 |
[ | PtSn/CMgO-600 | 1.0 | 0.1 | 550 | 23.5 | 30.6 | 97.5 |
本文 | PtGa/CZA-0.5-7 | 0.5 | 0.2 | 550 | 2.6 | 71.8 | 98.3 |
Table 1 Comparison of the performance of Pt-based catalysts in butane dehydrogenation and cracking
文献 | 催化剂 | Pt负载量(质量分数)/% | 质量/g | 反应温度/℃ | 质量空速/h-1 | 转化率/% | 烯烃选择性/% |
---|---|---|---|---|---|---|---|
[ | ADDINPt-Sn/ZSM-5(300) | 0.5 | — | 585 | 3.0 | 38.7 | 约90 |
[ | Pt-0.1ZnO@ZSM-5 | 0.5 | 0.3 | 625 | 0.5 | 约100 | 75 |
[ | ADDINPt/10TiO2/ZSM-5 | 1.0 | 0.3 | 625 | — | 76.1 | 67 |
[ | Pt-Sn/SAPO-34 | 0.5 | — | 585 | 2.8 | 36 | 约92 |
[ | EG-2 | 0.8 | 0.1 | 500 | 54.3 | 约20 | >97 |
[ | Pd-Pt/Al | 1.0 | 0.25 | 600 | 24.9 | 50 | 84 |
[ | Pt/ND@G | 1.0 | — | 450 | 24.0 | 约25 | >95 |
[ | PtSn/Sp-Zn-C | 0.3 | 0.2 | 530 | 6.5 | 约28 | 约96 |
[ | Pt/CNP | 0.3 | 0.2 | 530 | 6.5 | 29 | 92 |
[ | PtSn/CMgO-600 | 1.0 | 0.1 | 550 | 23.5 | 30.6 | 97.5 |
本文 | PtGa/CZA-0.5-7 | 0.5 | 0.2 | 550 | 2.6 | 71.8 | 98.3 |
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 孔径/ nm |
---|---|---|---|
CZA | 93.05 | 0.64 | 27.60 |
Ga/CZA-7 | 88.36 | 0.60 | 25.38 |
Pt/CZA-0.5 | 90.90 | 0.60 | 24.63 |
PtGa/CZA-0.5-7 | 90.04 | 0.57 | 23.51 |
Table 2 BET analysis of specific surface area, pore volume and pore size of catalysts
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 孔径/ nm |
---|---|---|---|
CZA | 93.05 | 0.64 | 27.60 |
Ga/CZA-7 | 88.36 | 0.60 | 25.38 |
Pt/CZA-0.5 | 90.90 | 0.60 | 24.63 |
PtGa/CZA-0.5-7 | 90.04 | 0.57 | 23.51 |
催化剂 | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|
CZA | 25.56 | 45.17 |
Ga/CZA-7 | 32.91 | 52.80 |
Pt/CZA-0.5 | 23.79 | 40.18 |
PtGa/CZA-0.5-7 | 26.44 | 46.10 |
Table 3 Ce 3d and O 1s data for CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-0.5-7 samples
催化剂 | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|
CZA | 25.56 | 45.17 |
Ga/CZA-7 | 32.91 | 52.80 |
Pt/CZA-0.5 | 23.79 | 40.18 |
PtGa/CZA-0.5-7 | 26.44 | 46.10 |
催化剂 | H2/C | C2H6/C | CH4/C |
---|---|---|---|
PtGa/CZA-0.1-7 | 2.1 | 0.2 | 0.7 |
PtGa/CZA-0.5-7 | 1.9 | 0.3 | 0.7 |
PtGa/CZA-0.9-7 | 2.0 | 0.4 | 0.7 |
Table 4 Molar ratios of n-butane catalytic cracking products with PtGa/CZA-x-7 (x=0.1, 0.5, 0.9) at 550℃
催化剂 | H2/C | C2H6/C | CH4/C |
---|---|---|---|
PtGa/CZA-0.1-7 | 2.1 | 0.2 | 0.7 |
PtGa/CZA-0.5-7 | 1.9 | 0.3 | 0.7 |
PtGa/CZA-0.9-7 | 2.0 | 0.4 | 0.7 |
1 | 陆江银, 赵震, 徐春明. 碳四烷烃催化裂解制低碳烯烃的研究进展[J]. 现代化工, 2004, 24(8): 15-18. |
Lu J Y, Zhao Z, Xu C M. Advances in catalytic cracking butane for production of light olefins[J]. Modern Chemical Industry, 2004, 24(8): 15-18. | |
2 | Rahimi N, Karimzadeh R. Kinetic modeling of catalytic cracking of C4 alkanes over La/HZSM-5 catalysts in light olefin production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 242-254. |
3 | Cheung T K, Ditri J L, Gates B C. Cracking of n-butane catalyzed by iron- and manganese-promoted sulfated zirconia[J]. Journal of Catalysis, 1995, 153(2): 344-349. |
4 | Harding W D, Kung H H, Kozhevnikov V L, et al. Phase equilibria and butane oxidation studies of the MgO-V2O5-MoO3 system[J]. Journal of Catalysis, 1993, 144(2): 597-610. |
5 | Lu J Y, Zhao Z, Xu C M, et al. FeHZSM-5 molecular sieves-highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199-203. |
6 | Lu J Y, Zhao Z, Xu C M, et al. Catalytic performance of bare supporters and supported KVO3 catalysts for cracking n-butane to produce light olefins[J]. Petroleum science, 2005, 2(1): 52-56. |
7 | Kijima N, Matano K, Saito M, et al. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Applied Catalysis A: General, 2001, 206(2): 237-244. |
8 | Eibl S, Jentoft R E, Gates B C, et al. Conversion of n-pentane and of n-butane catalyzed by platinum-containing WO x /TiO2 [J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2565-2573. |
9 | Kijima N, Matano K, Saito M, et al. Oxidative cracking of n-butane over BiOCl catalyst[J]. Journal of the Japan Petroleum Institute, 2000, 43(1): 89-90. |
10 | Liu X B, Li W Z, Zhu H O, et al. Light alkenes preparation by the gas phase oxidative cracking or catalytic oxidative cracking of high hydrocarbons[J]. Catalysis Letters, 2004, 94(1): 31-36. |
11 | Hu X Y, Li C Y, Yang C H. Catalytic cracking of n-heptane over HZSM-5 catalysts with the activation of lattice oxygen[J]. Catalysis Today, 2010, 158(3/4): 504-509. |
12 | Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction[J]. Applied Catalysis A: General, 2002, 230(1/2): 195-202. |
13 | Maia A J, Oliveira B G, Esteves P M, et al. Isobutane and n-butane cracking on Ni-ZSM-5 catalyst: effect on light olefin formation[J]. Applied Catalysis A: General, 2011, 403(1/2): 58-64. |
14 | Lu J Y, Zhao Z, Xu C M, et al. CrHZSM-5 zeolites-highly efficient catalysts for catalytic cracking of isobutane to produce light olefins[J]. Catalysis Letters, 2006, 109(1): 65-70. |
15 | Han J, Jiang G Y, Han S L, et al. The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane into light olefins and aromatics[J]. Catalysts, 2016, 6(1): 13. |
16 | 张洁, 周明明, 李春义, 等. 异丁烷脱氢裂解制低碳烯烃[J]. 石油炼制与化工, 2013, 44(5): 14-18. |
Zhang J, Zhou M M, Li C Y, et al. Dehydrogenation cracking of i-butane to produce light olefins[J]. Petroleum Processing and Petrochemicals, 2013, 44(5): 14-18. | |
17 | Agula B, Dalai S Q. Mesoporous Ce x Zr1- x O2 mixed oxides supported Cr-V-O nanocatalysts for dehydrogenation of propane to propene[J]. Advanced Materials Research, 2015, 1096: 509-513. |
18 | Narasimharao K, Ali T T. Catalytic oxidative cracking of propane over nanosized gold supported Ce0.5Zr0.5O2 catalysts[J]. Catalysis Letters, 2013, 143(10): 1074-1084. |
19 | Raju G, Reddy B M, Park S E. CO2 promoted oxidative dehydrogenation of n-butane over VO x /MO2-ZrO2 (M=Ce or Ti) catalysts[J]. Journal of CO2 Utilization, 2014, 5: 41-46. |
20 | He Z H, Wu B T, Xia Y, et al. CO2 oxidative dehydrogenation of n-butane to butadiene over CrO x supported on CeZr solid solution[J]. Molecular Catalysis, 2022, 524: 112262. |
21 | Ajumobi O O, Muraza O, Bakare I A, et al. Iron- and cobalt-doped ceria-zirconia nanocomposites for catalytic cracking of naphtha with regenerative capability[J]. Energy & Fuels, 2017, 31(11): 12612-12623. |
22 | Dejhosseini M, Aida T, Watanabe M, et al. Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water[J]. Energy & Fuels, 2013, 27(8): 4624-4631. |
23 | Trovarelli A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4): 439-520. |
24 | Choudhary V R, Rane V H. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons[J]. Journal of Catalysis, 1991, 130(2): 411-422. |
25 | Liu Y, Zhang G H, Liu S D, et al. Promoting n-butane dehydrogenation over PtMn/SiO2 through structural evolution induced by a reverse water-gas shift reaction[J]. ACS Catalysis, 2022, 12(21): 13506-13512. |
26 | Qi L, Zhang Y F, Babucci M, et al. Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets[J]. ACS Catalysis, 2022, 12(18): 11177-11189. |
27 | Ballarini A D, Zgolicz P, Vilella I M J, et al. n-Butane dehydrogenation on Pt, PtSn and PtGe supported on γ-Al2O3 deposited on spheres of α-Al2O3 by washcoating[J]. Applied Catalysis A: General, 2010, 381(1/2): 83-91. |
28 | de Miguel S, Ballarini A, Bocanegra S. New PtSn structured catalysts with ZnAl2O4 thin film for n-butane dehydrogenation reaction[J]. Applied Catalysis A: General, 2020, 590: 117315. |
29 | Deng L D, Miura H, Ohkubo T, et al. The importance of direct reduction in the synthesis of highly active Pt-Sn/SBA-15 for n-butane dehydrogenation[J]. Catalysis Science & Technology, 2019, 9(4): 947-956. |
30 | Nagaraja B M, Jung H, Yang D R, et al. Effect of potassium addition on bimetallic PtSn supported θ-Al2O3 catalyst for n-butane dehydrogenation to olefins[J]. Catalysis Today, 2014, 232: 40-52. |
31 | Zhang J Y, Cai X B, Wu K H, et al. Nanodiamond-core-reinforced, graphene-shell-immobilized platinum nanoparticles as a highly active catalyst for the low-temperature dehydrogenation of n-butane[J]. ChemCatChem, 2018, 10(3): 520-524. |
32 | Nawaz Z, Fei W. Pt-Sn-based SAPO-34 supported novel catalyst for n-butane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7442-7447. |
33 | Bocanegra S A, de Miguel S R, Borbath I, et al. Behavior of bimetallic PtSn/Al2O3 catalysts prepared by controlled surface reactions in the selective dehydrogenation of butane[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 52-60. |
34 | Chen X W, Peng M, Cai X B, et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction[J]. Nature Communications, 2021, 12(1): 2664. |
35 | Zhang B F, Zheng L R, Zhai Z W, et al. Subsurface-regulated PtGa nanoparticles confined in silicalite-1 for propane dehydrogenation[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16259-16266. |
36 | Kwon H C, Park Y, Park J Y, et al. Catalytic interplay of Ga, Pt, and Ce on the alumina surface enabling high activity, selectivity, and stability in propane dehydrogenation[J]. ACS Catalysis, 2021, 11(17): 10767-10777. |
37 | Wang T, Jiang F, Liu G, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2016, 62(12): 4365-4376. |
38 | Chang Q Y, Wang K Q, Hu P, et al. Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: insights from a microkinetic analysis[J]. AIChE Journal, 2020, 66(7): e16232. |
39 | Sattler J J H B, Gonzalez-Jimenez I D, Luo L, et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane[J]. Angewandte Chemie International Edition, 2014, 53(35): 9251-9256. |
40 | Payard P A, Rochlitz L, Searles K, et al. Dynamics and site isolation: keys to high propane dehydrogenation performance of silica-supported PtGa nanoparticles[J]. JACS Au, 2021, 1(9): 1445-1458. |
41 | Wang Y S, Suo Y J, Lv X W, et al. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 593: 304-314. |
42 | Collins S, Finos G, Alcántara R, et al. Effect of gallia doping on the acid-base and redox properties of ceria[J]. Applied Catalysis A: General, 2010, 388(1/2): 202-210. |
43 | Vecchietti J, Collins S, Xu W Q, et al. Surface reduction mechanism of cerium-gallium mixed oxides with enhanced redox properties[J]. The Journal of Physical Chemistry C, 2013, 117(17): 8822-8831. |
44 | Nawaz Z, Qing S, Gao J X, et al. Effect of Si/Al ratio on performance of Pt-Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(1): 57-62. |
45 | Zhang H D, Wu C Y, Wang J L, et al. ZSM-5 zeolite-encapsulated Pt-ZnO bimetallic catalysts for the catalytic cracking of iso-butane[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 833-842. |
46 | 刘佳, 姜桂元, 赵震,等. Pt/TiO2/ZSM-5催化剂的制备及其催化转化正丁烷[J]. 化工学报, 2016, 67(8): 3363-3373. |
Liu J, Jiang G Y, Zhao Z, et al. Preparation of Pt/TiO2/ZSM-5 catalyst for catalytic conversion of n-butane[J]. CIESC Journal, 2016, 67(8): 3363-3373. | |
47 | Shao M Y, Hu C Q, Xu X B, et al. Pt/TS-1 catalysts: effect of the platinum loading method on the dehydrogenation of n-butane[J]. Applied Catalysis A: General, 2021, 621: 118194. |
48 | Saxena R, De M. Enhanced performance of supported Pd-Pt bimetallic catalysts prepared by modified electroless deposition for butane dehydrogenation[J]. Applied Catalysis A: General, 2021, 610: 117933. |
49 | Ballarini A, Bocanegra S, Mendez J, et al. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins[J]. Inorganic Chemistry Communications, 2022, 142: 109638. |
50 | Shashikala V, Jung H, Shin C, et al. n-Butane dehydrogenation on PtSn/carbon modified MgO catalysts[J]. Catalysis Letters, 2013, 143(7): 651-656. |
51 | Morikawa A, Suzuki T, Kanazawa T, et al. A new concept in high performance ceria-zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 210-221. |
52 | Osaki T. Activity-determining factors for catalytic CO and CH4 oxidation on Pt/CeO2-ZrO2-Al2O3 cryogels[J]. Research on Chemical Intermediates, 2020, 46(6): 3125-3143. |
53 | Andonova S, Ok Z A, Drenchev N, et al. Pt/CeO x /ZrO x /γ-Al2O3 ternary mixed oxide deNO x catalyst: surface chemistry and NO x interactions[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12850-12863. |
54 | Li S S, He J S, Dan Y, et al. Bifunctional roles of Nd2O3 on improving the redox property of CeO2-ZrO2-Al2O3 materials[J]. Materials Chemistry and Physics, 2020, 240: 122150. |
55 | Chen K, Wan J, Lin J S, et al. Comparative study of three-way catalytic performance over Pd/CeO2-ZrO2-Al2O3 and Pd/La-Al2O3 catalysts: new insights into microstructure and thermal stability[J]. Molecular Catalysis, 2022, 526: 112361. |
56 | Usharani S, Rajendran V. Synthesis and characterization of surfactant assisted CeO2/ZrO2 nanocomposite[J]. International Journal of Pure and Applied Physics, 2016, 12(1): 53-60. |
57 | Ibrahim M M, El-Molla S A, Ismail S A. Influence of γ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications[J]. Journal of Molecular Structure, 2018, 1158: 234-244. |
58 | Ibrahim M M. An efficient nano-adsorbent via surfactants/dual surfactants assisted ultrasonic co-precipitation method for sono-removal of monoazo and diazo anionic dyes[J]. Chinese Journal of Chemical Engineering, 2021, 40: 225-236. |
59 | Panahi-Kalamuei M, Alizadeh S, Mousavi-Kamazani M, et al. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1301-1305. |
60 | Zhao Q, Wang Y, Li G Y, et al. CeZrO x promoted water-gas shift reaction under steam-methane reforming conditions on Ni-HTASO5[J]. Catalysts, 2020, 10(10): 1110. |
61 | Wang Z Y, He Z H, Xia Y, et al. Oxidative dehydrogenation of propane to propylene in the presence of CO2 over gallium nitride supported on NaZSM-5[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2807-2817. |
62 | Wang G W, Zhu X L, Li C Y. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes[J]. The Chemical Record, 2020, 20(6): 604-616. |
63 | Deng J, Zhou Y, Cui Y J, et al. The influence of H2O2 on the properties of CeO2-ZrO2 mixed oxides[J]. Journal of Materials Science, 2017, 52(9): 5242-5255. |
64 | Wang J Q, Shen M Q, Wang J, et al. Effect of cobalt doping on ceria-zirconia mixed oxide: structural characteristics, oxygen storage/release capacity and three-way catalytic performance[J]. Journal of Rare Earths, 2012, 30(9): 878-883. |
65 | Quaino P, Syzgantseva O, Siffert L, et al. Unravelling the enhanced reactivity of bulk CeO2 doped with gallium: a periodic DFT study[J]. Chemical Physics Letters, 2012, 519/520: 69-72. |
66 | Tan W, Xie S H, Wang X, et al. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust[J]. Chemical Engineering Journal, 2021, 426: 131855. |
67 | Deng C S, Li B, Dong L H, et al. NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2 [J]. Physical Chemistry Chemical Physics, 2015, 17(24): 16092-16109. |
68 | Sellick D R, Aranda A, García T, et al. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Applied Catalysis B: Environmental, 2013, 132/133: 98-106. |
69 | Li S S, Wang W, Zhao Y, et al. Correlation between the morphology of NH4Al(OH)2CO3 and the properties of CeO2-ZrO2/Al2O3 material[J]. Materials Chemistry and Physics, 2021, 266: 124552. |
70 | Zhou S L, Gao L Y, Wei F F, et al. On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria[J]. Journal of Catalysis, 2019, 375: 410-418. |
71 | Kunwar D, Zhou S L, DeLaRiva A, et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support[J]. ACS catalysis, 2019, 9(5): 3978-3990. |
72 | Krannila H, Haag W O, Gates B C. Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5[J]. Journal of Catalysis, 1992, 135(1): 115-124. |
73 | 张执刚.反应压力对催化裂解工艺的影响及反应机理研究[J].炼油技术与工程,2010, 40(3): 6-9. |
Zhang J G. Impact of reaction pressure on deep catalytic cracking process and research of reaction mechanisms[J]. Petroleum Refinery Engineering, 2010, 40(3): 6-9. |
[1] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[2] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[3] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[4] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[5] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[6] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[7] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[8] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[9] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[10] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[11] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[12] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[13] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[14] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[15] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||