CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5003-5014.DOI: 10.11949/0438-1157.20250134
• Reviews and monographs • Previous Articles Next Articles
Ling LI1(
), Xinxiao ZHOU1, Chaofeng MA1, Jian WU2(
), Wanjin YU1(
), Wucan LIU1, Jianjun ZHANG1
Received:2025-02-14
Revised:2025-03-18
Online:2025-11-25
Published:2025-10-25
Contact:
Jian WU, Wanjin YU
李玲1(
), 周鑫枭1, 马超峰1, 吴建2(
), 于万金1(
), 刘武灿1, 张建君1
通讯作者:
吴建,于万金
作者简介:李玲(1986—),女,博士研究生,高级工程师,liling7@sinochem.com
基金资助:CLC Number:
Ling LI, Xinxiao ZHOU, Chaofeng MA, Jian WU, Wanjin YU, Wucan LIU, Jianjun ZHANG. Preparation and applications of eco-friendly fluorocarbon chemical chlorofluoroethylene[J]. CIESC Journal, 2025, 76(10): 5003-5014.
李玲, 周鑫枭, 马超峰, 吴建, 于万金, 刘武灿, 张建君. 环保型氟碳化学品一氯一氟乙烯的制备与应用[J]. 化工学报, 2025, 76(10): 5003-5014.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | CH3CFCl2流量/(mol/h) | 反应温度/℃ | 接触时间/s | CH3CFCl2含量/% | 产物含量/% | CH2 收率/% | |
|---|---|---|---|---|---|---|---|
CH2 CFCl | CH2 CCl2 | ||||||
| 1 | 0.62 | 500 | 35 | 12.9 | 64.5 | 8.6 | 74 |
| 2 | 1.85 | 500 | 12 | 44.8 | 39.5 | 7.6 | 71.5 |
| 3 | 0.50 | 400 | 49 | 64.9 | 12.4 | 7.7 | 35.3 |
| 4 | 1.95 | 600 | 10 | 0 | 27.4 | 0 | 27.4 |
Table 1 The product content of dichlorofluoroethane pyrolysis under different conditions in a nickel tube[42]
| 序号 | CH3CFCl2流量/(mol/h) | 反应温度/℃ | 接触时间/s | CH3CFCl2含量/% | 产物含量/% | CH2 收率/% | |
|---|---|---|---|---|---|---|---|
CH2 CFCl | CH2 CCl2 | ||||||
| 1 | 0.62 | 500 | 35 | 12.9 | 64.5 | 8.6 | 74 |
| 2 | 1.85 | 500 | 12 | 44.8 | 39.5 | 7.6 | 71.5 |
| 3 | 0.50 | 400 | 49 | 64.9 | 12.4 | 7.7 | 35.3 |
| 4 | 1.95 | 600 | 10 | 0 | 27.4 | 0 | 27.4 |
| 催化剂 | 反应温度/℃ | 选择性/% | |
|---|---|---|---|
CF2 CH2 | CFCl CH2 | ||
| Al2O3 | 200 | — | 1.8 |
| 300 | 1.3 | 91.0 | |
| 400 | 7.6 | 90.6 | |
| SiO2 | 400 | 14.5 | 75.5 |
| Al2O3-SiO2 | 200 | 1.1 | 52.2 |
| 300 | 36.6 | 63.2 | |
| 400 | 78.6 | 2.1 | |
| TiO2 | 300 | 2.0 | 88.0 |
| 400 | 67.2 | 11.8 | |
| AlF3-Al2O3 | 300 | 10.4 | 79.5 |
| 400 | 12.4 | 83.4 | |
| 活性炭 | 300 | 93.5 | 3.2 |
| 无催化剂 | 500 | 5.9 | — |
Table 2 Selectivity of dehydrohalogenation products of 1-chloro-1,1-difluoroethane under different catalysts and reaction temperatures[45]
| 催化剂 | 反应温度/℃ | 选择性/% | |
|---|---|---|---|
CF2 CH2 | CFCl CH2 | ||
| Al2O3 | 200 | — | 1.8 |
| 300 | 1.3 | 91.0 | |
| 400 | 7.6 | 90.6 | |
| SiO2 | 400 | 14.5 | 75.5 |
| Al2O3-SiO2 | 200 | 1.1 | 52.2 |
| 300 | 36.6 | 63.2 | |
| 400 | 78.6 | 2.1 | |
| TiO2 | 300 | 2.0 | 88.0 |
| 400 | 67.2 | 11.8 | |
| AlF3-Al2O3 | 300 | 10.4 | 79.5 |
| 400 | 12.4 | 83.4 | |
| 活性炭 | 300 | 93.5 | 3.2 |
| 无催化剂 | 500 | 5.9 | — |
| 反应途径 | 原料 | 优点 | 缺点 |
|---|---|---|---|
| 金属还原 | 1,1-二氯-2-溴-1-氟乙烷[ 1,1,2-三氯-1-氟乙烷[ | 条件温和,原料易得 | “三废”量高,操作复杂 |
| 碱液脱卤化氢 | 1,2-二氯-1-氟乙烷[ 1,1-二氯-1-氟乙烷[ | 条件温和,转化率和选择性优异 | 产生大量碱性废液 |
| 热解 | 1-氯-1,1-二氟乙烷[ | 气相反应连续进料,“三废”量少 | 反应速率慢,选择性低,反应温度高 |
催化热解 | 1-氯-1,1-二氟乙烷[ 1,1,1-三氯乙烷[ 1,1-二氯-1-氟乙烷[ | 在热解途径的基础上提升反应速率,降低反应温度 | 催化剂易失活,选择性较低,反应温度较高 |
Table 3 Comparison of reaction pathways for the preparation of HCFO-1131 through different dehalogenation/dehalogenation methods
| 反应途径 | 原料 | 优点 | 缺点 |
|---|---|---|---|
| 金属还原 | 1,1-二氯-2-溴-1-氟乙烷[ 1,1,2-三氯-1-氟乙烷[ | 条件温和,原料易得 | “三废”量高,操作复杂 |
| 碱液脱卤化氢 | 1,2-二氯-1-氟乙烷[ 1,1-二氯-1-氟乙烷[ | 条件温和,转化率和选择性优异 | 产生大量碱性废液 |
| 热解 | 1-氯-1,1-二氟乙烷[ | 气相反应连续进料,“三废”量少 | 反应速率慢,选择性低,反应温度高 |
催化热解 | 1-氯-1,1-二氟乙烷[ 1,1,1-三氯乙烷[ 1,1-二氯-1-氟乙烷[ | 在热解途径的基础上提升反应速率,降低反应温度 | 催化剂易失活,选择性较低,反应温度较高 |
| [25] | Yang C, Mao W, Dong X Z, et al. Research progress in the synthesis of olefins by selective hydrodechlorination[J]. CIESC Journal, 2025, 76(1): 53-70. |
| [26] | Booth H S, Burchfield P E, Bixby E M, et al. Fluorochloroethylenes[J]. Journal of the American Chemical Society, 1933, 55(6): 2231-2235. |
| [27] | Renoll M W. Preparation of 1-chloro-1-fluoro ethylene: US2344061A[P]. 1944-03-14. |
| [28] | Jonas H, Kwasnik W. Verfahren zur Herstellung von fluorhaltigen olefinen: DE847442C[P]. 1953-05-11. |
| [29] | Boyer W M, Gilbert G. Process for making 1-chloro-2-fluoroethylene: US2924626A[P]. 1960-02-09. |
| [30] |
Stoppa P, Pietropolli Charmet A, Giorgianni S, et al. High-resolution infrared laser study of the ν4 absorption band of cis-CHCl CHF[J]. Journal of Molecular Spectroscopy, 1999, 198(1): 123-128.
|
| [31] | Onishi K, Okamoto S, Wada A, et al. Production of 1-chloro-1-fluoroethylene: JPH11100335A[P]. 1999-04-13. |
| [32] | Osaka K, Okura K, Shimizu T, et al. Production method for 1-chloro-1-fluoroethylene: JP2004115463A[P]. 2004-04-15. |
| [33] | Morikawa S, Onishi K, Okamoto S, et al. Production of 1-chloro-1-fluoroethylene: JP3408281B2[P]. 2003-05-19. |
| [34] | Feasler C F, Stover W A. Pyrolysis of difluoromonochloroethane: US2627529A[P]. 1953-02-03. |
| [35] | Martens G J, Godfroid M, Decelle R, et al. The mechanism of thermal dehydrochlorination. Pyrolysis of 1-chloro-1-fluoroethane and 1-chloro-1,1-difluoroethane[J]. International Journal of Chemical Kinetics, 1972, 4(6): 645-655. |
| [36] | Huybrechts G, Hubin Y. Pyrolysis of 1-chloro-1,1-difluoroethane in the absence and in the presence of CCl4 and mixtures of CCl4 + HCl[J]. International Journal of Chemical Kinetics, 1985, 17(2): 157-165. |
| [37] | Huybrechts G, Eerdekens K. Pyrolysis of 1,1-dichloro-1-fluoroethane in the absence and presence of added propene or CCl4: a computer-aided kinetic study[J]. International Journal of Chemical Kinetics, 2001, 33(3): 191-197. |
| [38] | Fujll C, Sinike T, Inoue Y, et al. Process for producing 1-chloro-1-fluoroethylene: US3819729A[P]. 1974-06-25. |
| [39] | Teinz K, Wuttke S, Börno F, et al. Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3-tetrafluorobutane[J]. Journal of Catalysis, 2011, 282(1): 175-182. |
| [40] | Mochida I, Anju Y, Yamamoto H, et al. The catalytic dehydrohalogenation of haloethanes on solid acids and bases[J]. Bulletin of the Chemical Society of Japan, 1971, 44(12): 3305-3310. |
| [41] | Bratton F H, Weimann G M. Manufacture of 1,1-chlorofluoroethylenes: US2478933A[P]. 1949-08-16. |
| [42] | Prill E J. Preparation of vinylidene chlorofluoride: US2894043A[P]. 1959-07-07. |
| [43] | Miller C B, Bratton F H. Manufacture of 1,1,1-trifluoroethane: US2478932A[P]. 1949-08-16. |
| [44] | Mantell R M, Barnhart W S. Selective dehydrohalogenation of fluorohaloalkanes using a copper catalyst: US2774799A[P]. 1956-12-18. |
| [45] | Walker F H, Pavlath A E. Dehydrohalogenation of 1,1,1-trihaloethanes[J]. The Journal of Organic Chemistry, 1965, 30(10): 3284-3285. |
| [46] | Liu W C, Liu Y N, Mardochee K M, et al. Selectivity dependence of 1,1-difluoro-1-chloroethane dehydrohalogenation on the metal-support interaction over SrF2 catalyst[J]. Catalysts, 2020, 10(3): 355. |
| [47] | 倪传法, 胡金波. 涉及碳-氟键断裂与重组的氟化重排反应: 由炔丙基氟制备官能团化偕二氟烯丙基化合物[J]. 有机化学, 2020, 40(9): 2997-2998. |
| Ni C F, Hu J B. Fluorinative rearrangement involving cleavage and recombination of carbon-fluorine bond: synthesis of functionalized allylic gem-difluorides from propargylic fluorides[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2997-2998. | |
| [1] | Strynar M. Pervasive fluorinated chemicals[J]. Nature Geoscience, 2024, 17: 280-281. |
| [2] | Liu X R, Zhao Z H, Gao Y K, et al. Triboelectric nanogenerators exhibiting ultrahigh charge density and energy density[J]. Energy & Environmental Science, 2024, 17(11): 3819-3831. |
| [3] | Chen X, Qin H C, Qian X S, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. |
| [4] | Scheringer M. Innovate beyond PFAS[J]. Science, 2023, 381(6655): 251. |
| [5] | Sicard A J, Baker R T. Fluorocarbon refrigerants and their syntheses: past to present[J]. Chemical Reviews, 2020, 120(17): 9164-9303. |
| [6] | Qing F L, Liu X Y, Ma J A, et al. A fruitful decade of organofluorine chemistry: new reagents and reactions[J]. CCS Chemistry, 2022, 4(8): 2518-2549. |
| [7] | Gambi A, Pietropolli Charmet A, Stoppa P, et al. Molecular synthons for accurate structural determinations: the equilibrium geometry of 1-chloro-1-fluoroethene[J]. Physical Chemistry Chemical Physics, 2019, 21(7): 3615-3625. |
| [8] | Leung H O, Marshall M D. Effect of chlorine substitution in modulating the relative importance of two intermolecular interactions: the microwave spectrum and molecular structure of (E)-1-chloro-2-fluoroethylene-HCl[J]. The Journal of Physical Chemistry. A, 2016, 120(40): 7955-7963. |
| [9] | Leung H O, Marshall M D, Khan N D. The microwave spectrum and molecular structure of (Z)-1-chloro-2-fluoroethylene-acetylene: demonstrating the importance of the balance between steric and electrostatic interactions in heterodimer formation[J]. The Journal of Physical Chemistry A, 2017, 121(30): 5651-5658. |
| [10] | Thomas M, Henne A L, Mcnary R R. Manufacture of aliphatic fluoro compounds: US1930129A[P]. 1933-10-10. |
| [11] | 李玲, 马超峰, 卢春山, 等. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
| Li L, Ma C F, Lu C S, et al. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. | |
| [48] | 李利春, 牛怀成, 韩文锋, 等. 气相氟氯交换合成氢氟烃的催化剂及反应机理[J]. 化工生产与技术, 2013, 20(4): 1-8. |
| Li L C, Niu H C, Han W F, et al. Catalyst and mechanism of gas-phase F/Cl exchange reactions for HFCs synthesis—a review[J]. Chemical Production and Technology, 2013, 20(4): 1-8. | |
| [49] | Jin F X, Zhang R H, Wang L L. Zn-doped nano-Cr2O3 catalyst for fluorination of chlorinated light olefins [J]. Molecular Catalysis, 2024, 558: 114052. |
| [50] | Elsheikh M Y. Catalytic process for the dehydrohalogenation of 1-chloro-1,1-difluoroethane: EP0407711A1[P]. 1991-01-16. |
| [51] | Han W F, Liu B, Kang Y K, et al. Experimental and DFT mechanistic study of dehydrohalogenation of 1-chloro-1,1-difluoroethane over metal fluorides[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18149-18159. |
| [52] | Zhang T Y, Zhang C P, Ma X X, et al. Comprehensive study on selective dehydrochlorination of 2-chloro-3,3,3-trifluoropropene over carbon-based catalysts and catalyst deactivation[J]. Molecular Catalysis, 2023, 547: 113314. |
| [53] | Gotou A, Hoshiva N, Higashi M, et al. Method for producing butadiene compound: 110753680A[P]. 2020-02-04. |
| [54] | 贾晓卿, 庆飞要, 张呈平, 等. 引发剂、氟化催化剂和E-1,3,3,3-四氟丙烯与-1,3,3,3-四氟丙烯的制备方法: 116037117A[P]. 2023-05-02. |
| Jia X Q, Qing F Y, Zhang C P, et al. Initiator, fluorination catalyst and preparation method of E-1,3,3,3-tetrafluoropropene and -1,3,3,3-tetrafluoropropene: 116037117A[P]. 2023-05-02. | |
| [55] | Takahira Y, Jomuta D. Method for producing olefin containing chlorine and fluorine: 107108419A[P]. 2017-08-29. |
| [56] | Venkatesan T R, Wübbenhorst M, Gerhard R. Structure-property relationships in three-phase relaxor-ferroelectric terpolymers[J]. Ferroelectrics, 2022, 586(1): 60-81. |
| [57] | Liu F H, Li Z Y, Wang Q, et al. High breakdown strength and low loss binary polymer blends of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2018, 29(4): 1271-1277. |
| [12] | 张振华, 王博, 秦越, 等. 气相催化合成氢氟烃和氢氟烯烃催化剂研究进展[J]. 工业催化, 2016, 24(5): 8-12. |
| Zhang Z H, Wang B, Qin Y, et al. Research advance in the catalysts for gas phase catalytic synthesis of hydrofluorocarbons and hydrofluoroolefins[J]. Industrial Catalysis, 2016, 24(5): 8-12. | |
| [13] | Lee T C, Tong Y, Fu W C. Advances in continuous flow fluorination reactions[J]. Chemistry-An Asian Journal, 2023, 18(21): e202300723. |
| [14] | Liang T, Neumann C N, Ritter T. Introduction of fluorine and fluorine-containing functional groups[J]. Angewandte Chemie International Edition, 2013, 52(32): 8214-8264. |
| [15] | Khandelwal M, Pemawat G, Khangarot R K. Recent developments in nucleophilic fluorination with potassium fluoride (KF): a review[J]. Asian Journal of Organic Chemistry, 2022, 11(9): e202200325. |
| [16] | 施浩进, 陆海洋, 唐新国. 浅谈气相氟化反应催化剂的研究进展[J]. 有机氟工业, 2019(4): 54-57. |
| Shi H J, Lu H Y, Tang X G. Research process of catalysts for gas phase fluorination[J]. Organo-Fluorine Industry, 2019(4): 54-57. | |
| [17] | 杨艳丽, 马耀, 李惠静, 等. 有机化合物氟化反应的研究进展[J]. 化学研究与应用, 2023, 35(1): 10-20. |
| Yang Y L, Ma Y, Li H J, et al. Research progress in fluorination reaction of organic compounds[J]. Chemical Research and Application, 2023, 35(1): 10-20. | |
| [18] | Newton L, Mast W C. Preparation of fluorinated olefins: US2377297A[P]. 1945-05-29. |
| [19] | Fiske T R, Baugh D W. Fluorination of chlorinated hydrocarbons: US4147733A[P]. 1979-04-03. |
| [20] | 张伟, 吕剑. 低温气相氟化催化剂的制备及应用研究[J]. 工业催化, 2004, 12(6): 39-43. |
| [58] | van Duong Q, Nguyen V P, Domingues Dos Santos F, et al. Localized fretting-vibrotactile sensations for large-area displays[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33292-33301. |
| [59] | Li C W, Shi L W, Yang W Y, et al. All polymer dielectric films for achieving high energy density film capacitors by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea[J]. Nanoscale Research Letters, 2020, 15(1): 36. |
| [60] | Pereira N, Pinto R S, Gonçalves R, et al. Direct-ink writing processing of high-k poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and its integration into an all-printed capacitive touch-sensing device[J]. ACS Applied Electronic Materials, 2023, 5(11): 5977-5985. |
| [61] | Li Y S, Chen Y X, Fang H G, et al. Electron-beam writing of a relaxor ferroelectric polymer for multiplexing information storage and encryption[J]. Nanoscale, 2024, 16(1): 180-187. |
| [62] | Barbosa J C, Pinto R S, Hilliou L, et al. Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene): a new binder for conventional and printable lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 14129-14140. |
| [63] | Bauer F. Method for the production of terpolymers based on VDF, TRFE and CFE, or CTFE: 102803315A[P]. 2012-11-28. |
| [64] | Mahler B A, Nappa M J. Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene: 102015957B[P]. 2014-06-18. |
| [65] | Della Schiava N, Pedroli F, Thetpraphi K, et al. Effect of beta-based sterilization on P(VDF-TrFE-CFE) terpolymer for medical applications[J]. Scientific Reports, 2020, 10(1): 8805. |
| [66] | Pinto R S, Serra J P, Barbosa J C, et al. Tailoring poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) membrane microstructure for lithium-ion battery separator applications[J]. Journal of Colloid and Interface Science, 2025, 680: 714-724. |
| [67] | 孙文浩, 田君, 张锟, 等. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| Sun W H, Tian J, Zhang K, et al. New development of novel separators with high thermal stability for lithium-ion batteries[J]. CIESC Journal, 2025, 76(6): 2524-2543. | |
| [68] | 朱伟伟, 刘一凡, 吴于松, 等. 一种低溶胀偏氟乙烯共聚物作为锂电黏结剂的应用: 114685705A[P]. 2022-07-01. |
| [20] | Zhang W, Lv J. Advances in the preparation and application of low-temperature vapor-phase fluorination catalysts[J]. Industrial Catalysis, 2004, 12(6): 39-43. |
| [21] | 秦越, 张伟, 王博, 等. 脱卤化氢合成氢氟烯烃催化剂的研究进展[J]. 化工新型材料, 2011, 39(12): 34-37. |
| Qin Y, Zhang W, Wang B, et al. Research advance on catalysts for the synthesis of hydrofluoroolefins by dehydrohalogenation reaction[J]. New Chemical Materials, 2011, 39(12): 34-37. | |
| [22] | Roberts A L, Jeffers P M, Wolfe N L, et al. Structure-reactivity relationships in dehydrohalogenation reactions of polychlorinated and polybrominated alkanes[J]. Critical Reviews in Environmental Science and Technology, 1993, 23(1): 1-39. |
| [23] | Zhang T Y, Zhang C P, Ma X X, et al. Comprehensive study on selective dehydrochlorination of 2-chloro-3,3,3-trifluoropropene over carbon-based catalysts and catalyst deactivation[J]. Molecular Catalysis, 2023, 547: 113314. |
| [24] | Jin Y Z, Zhou Y B, Zhang P Z, et al. Ionic liquid catalysts for dehydrochlorination: stability, reaction mechanism, and catalyst optimization[J]. Chemical Engineering Journal, 2024, 500: 156628. |
| [25] | 杨晨, 毛伟, 董兴宗, 等. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70. |
| [68] | Zhu W W, Liu Y F, Wu Y S, et al. Application of low-swelling vinylidene fluoride copolymer as lithium battery binder: 114685705A[P]. 2022-07-01. |
| [69] | 程宗盛, 梁任龙, 黄永锋, 等. 一种超低电阻涂碳铝箔及其制备方法: 117304753A[P]. 2023-12-29. |
| Cheng Z S, Liang R L, Huang Y F, et al. Ultralow-resistance carbon-coated aluminum foil and preparation method thereof: 117304753A[P]. 2023-12-29. | |
| [70] | Neese B, Chu B J, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008, 321(5890): 821-823. |
| [71] | Shi J Y, Han D L, Li Z C, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225. |
| [72] | 冯嘉旺, 蔡玉, 施骏业, 等. 面向零碳制冷与热泵的电卡复合材料及柔性制冷器件[J]. 南京大学学报(自然科学), 2022, 58(6): 925-943. |
| Feng J W, Cai Y, Shi J Y, et al. Electrocaloric nanocomposites and refrigerators for zero carbon refrigeration and heat pumps[J]. Journal of Nanjing University (Natural Science), 2022, 58(6): 925-943. | |
| [73] | Fan B H, Zhou M Y, Zhang C, et al. Polymer-based materials for achieving high energy density film capacitors[J]. Progress in Polymer Science, 2019, 97: 101143. |
| [74] | Zhang X X, Li Y Z. A review of recent research on hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants[J]. Energy, 2024, 311: 133423. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [3] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [4] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [5] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [6] | Min YANG, Xinwei DUAN, Junhong WU, Jie MI, Jiancheng WANG, Mengmeng WU. COS catalyzed hydrolysis performance and deactivation mechanism of Sm2O3/γ-Al2O3 catalysts [J]. CIESC Journal, 2025, 76(8): 4061-4070. |
| [7] | Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene [J]. CIESC Journal, 2025, 76(8): 4071-4080. |
| [8] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [9] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [10] | Mengyuan PENG, Jiaming LI, Min SHA, Ding ZHANG. Study on performance of quaternary ammonium fluorocarbon surfactant compound system [J]. CIESC Journal, 2025, 76(8): 4177-4184. |
| [11] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [12] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [13] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [14] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [15] | Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag [J]. CIESC Journal, 2025, 76(7): 3639-3650. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||