CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5128-5140.DOI: 10.11949/0438-1157.20250335
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuxin JIN1(
), Wenli WU1, Hua TONG1, Daiqi YE1,2,3, Limin CHEN1,2,3(
)
Received:2025-04-02
Revised:2025-06-23
Online:2025-11-25
Published:2025-10-25
Contact:
Limin CHEN
金雨昕1(
), 吴文莉1, 童婳1, 叶代启1,2,3, 陈礼敏1,2,3(
)
通讯作者:
陈礼敏
作者简介:金雨昕(2000—),女,硕士研究生,1005458648@qq.com
基金资助:CLC Number:
Yuxin JIN, Wenli WU, Hua TONG, Daiqi YE, Limin CHEN. Study on synergistic catalysis by highly dispersed dual-site Co species for CO2-oxidative dehydrogenation of ethane to ethylene[J]. CIESC Journal, 2025, 76(10): 5128-5140.
金雨昕, 吴文莉, 童婳, 叶代启, 陈礼敏. 高分散双位点Co物种协同催化CO2氧化乙烷脱氢制乙烯的研究[J]. 化工学报, 2025, 76(10): 5128-5140.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | BET比表 面积/(m2·g-1) | t-plot 比表面积/(m2·g-1) | 总孔容积/(cm³·g-1) | HK-O微孔孔容/(cm³·g-1) |
|---|---|---|---|---|
| 0.8Co-SSZ-13 | 942 | 932 | 0.39 | 0.35 |
| 0.8+0.3%@Co-SSZ-13 | 940 | 923 | 0.38 | 0.35 |
| 0.8+0.4%@Co-SSZ-13 | 707 | 697 | 0.29 | 0.27 |
| 0.8+0.6%@Co-SSZ-13 | 693 | 684 | 0.28 | 0.26 |
| 0.8+0.8%@Co-SSZ-13 | 688 | 669 | 0.28 | 0.25 |
Table 1 The pore textural properties after impregnation
| 催化剂 | BET比表 面积/(m2·g-1) | t-plot 比表面积/(m2·g-1) | 总孔容积/(cm³·g-1) | HK-O微孔孔容/(cm³·g-1) |
|---|---|---|---|---|
| 0.8Co-SSZ-13 | 942 | 932 | 0.39 | 0.35 |
| 0.8+0.3%@Co-SSZ-13 | 940 | 923 | 0.38 | 0.35 |
| 0.8+0.4%@Co-SSZ-13 | 707 | 697 | 0.29 | 0.27 |
| 0.8+0.6%@Co-SSZ-13 | 693 | 684 | 0.28 | 0.26 |
| 0.8+0.8%@Co-SSZ-13 | 688 | 669 | 0.28 | 0.25 |
| [14] | Alamdari A, Karimzadeh R, Abbasizadeh S. Present state of the art of and outlook on oxidative dehydrogenation of ethane: catalysts and mechanisms[J]. Reviews in Chemical Engineering, 2021, 37(4): 481-532. |
| [15] | Bikbaeva V, Nesterenko N, Konnov S, et al. A low carbon route to ethylene: ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst[J]. Applied Catalysis B: Environmental, 2023, 320: 122011. |
| [16] | Gomez E, Yan B H, Kattel S, et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J]. Nature Reviews Chemistry, 2019, 3(11): 638-649. |
| [17] | Chen M, Liu H, Wang Y, et al. Cobalt catalyzed ethane dehydrogenation to ethylene with CO2: relationships between cobalt species and reaction pathways[J]. Journal of Colloid and Interface Science, 2024, 660: 124-135. |
| [18] | Jalid F, Khan T S, Ali Haider M. CO2 reduction and ethane dehydrogenation on transition metal catalysts: mechanistic insights, reactivity trends and rational design of bimetallic alloys[J]. Catalysis Science & Technology, 2021, 11(1): 97-115. |
| [19] | Koirala R, Safonova O V, Pratsinis S E, et al. Effect of cobalt loading on structure and catalytic behavior of CoO x /SiO2 in CO2-assisted dehydrogenation of ethane[J]. Applied Catalysis A: General, 2018, 552: 77-85. |
| [20] | Liu P Y, Zhang L N, Wang X B, et al. Preparation, structure-performance relationship, and reaction network of ZnZSM-5 for oxidative dehydrogenation of ethane with CO2 [J]. Chemistry – A European Journal, 2023, 29(22): e202203960. |
| [21] | Rigamonti M G, Shah M, Gambu T G, et al. Reshaping the role of CO2 in propane dehydrogenation: from waste gas to platform chemical[J]. ACS Catalysis, 2022, 12 (15): 9339–9358. |
| [22] | 李亚男, 郭晓红, 周广栋, 等. Co-MCM-41和Co-MCM-48分子筛的合成与表征及其对临CO2乙烷脱氢反应的催化性能[J]. 催化学报, 2005, 26(7): 591-596. |
| Li Y N, Guo X H, Zhou G D, et al. Synthesis characterization and catalytic activity of Co-MCM-41 and Co-MCM-48 for CO2-dehydrogenation of ethane[J]. Chinese Journal of Catalysis, 2005, 26(7): 591-596. | |
| [23] | Hu B, Getsoian A, Schweitzer N M, et al. Selective propane dehydrogenation with single-site CoⅡ on SiO2 by a non-redox mechanism[J]. Journal of Catalysis, 2015, 322: 24-37. |
| [24] | Wang G W, Jiang Y X, Zhang S, et al. Insight into the active co phase of Co/Al2O3 catalyst for ethane dehydrogenation[J]. Catalysis Letters, 2022, 152(10): 2971-2979. |
| [25] | Fung V, Tao F, Jiang D E. Understanding oxidative dehydrogenation of ethane on Co3O4 nanorods from density functional theory[J]. Catalysis Science & Technology, 2016, 6(18): 6861-6869. |
| [26] | Tyo E C, Yin C R, Di Vece M, et al. Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity[J]. ACS Catalysis, 2012, 2(11): 2409-2423. |
| [27] | Zheng Y B, Zhang X B, Li J J, et al. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts[J]. Chinese Journal of Catalysis, 2024, 65: 40-69. |
| [28] | Sun Y N, Gao Y N, Wu Y M, et al. Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane[J]. Catalysis Communications, 2015, 60: 42-45. |
| [29] | Wang M R, Zhang G H, Zhu J, et al. Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation[J]. Chemical Engineering Journal, 2022, 446: 137217. |
| [30] | Lippens B. Studies on pore systems in catalysts:the V-t Method[J]. Journal of Catalysis, 1965, 4(3): 319-323. |
| [31] | Mofrad A M, Peixoto C, Blumeyer J, et al. Vibrational spectroscopy of sodalite: theory and experiments[J]. The Journal of Physical Chemistry C, 2018, 122(43): 24765-24779. |
| [32] | Zhang J, Chu Y Y, Liu X L, et al. Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy[J]. Chinese Journal of Catalysis, 2019, 40(12): 1854-1859. |
| [33] | Núñez F, Chen L F, Wang J A, et al. Bifunctional Co3O4/ZSM-5 mesoporous catalysts for biodiesel production via esterification of unsaturated omega-9 oleic acid[J]. Catalysts, 2022, 12(8): 900. |
| [34] | Wu L Z, Fu Z Y, Wei J H, et al. The investigation into the dehydroaromatization of ethane over cobalt-modified ZSM-5 catalyst[J]. Microporous and Mesoporous Materials, 2022, 343: 112159. |
| [35] | Koirala R, Buechel R, Pratsinis S E, et al. Silica is preferred over various single and mixed oxides as support for CO2-assisted cobalt-catalyzed oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2016, 527: 96-108. |
| [36] | Chen C, Zhang S M, Wang Z, et al. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2020, 383: 77-87. |
| [37] | Charrad R, Solt H E, Domján A, et al. Selective catalytic reduction of NO by methane over Co, H-SSZ-13 catalysts: types and catalytic functions of active Co sites[J]. Journal of Catalysis, 2020, 385: 87-102. |
| [38] | Zhang X Y, Shen Q, He C, et al. Decomposition of nitrous oxide over co-zeolite catalysts: role of zeolite structure and active site[J]. Catalysis Science & Technology, 2012, 2(6): 1249-1258. |
| [1] | Mora C, Spirandelli D, Franklin E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8(12): 1062-1071. |
| [2] | Liu J X, Zhang Z M, Jiang Y L, et al. Influence of the zeolite surface properties and potassium modification on the Zn-catalyzed CO2-assisted oxidative dehydrogenation of ethane[J]. Applied Catalysis B: Environmental, 2022, 304: 120947. |
| [3] | 谢卫东. 炼厂气中碳二回收工艺技术选择及工业应用[J]. 石油石化绿色低碳, 2018, 3(6): 3-7. |
| Xie W D. Selection of C2 recovery process fom refnery off-gas and its industrial application[J]. Green Petroleum & Petrochemicals, 2018, 3(6): 3-7. | |
| [4] | Amghizar I, Dedeyne J N, Brown D J, et al. Sustainable innovations in steam cracking: CO2 neutral olefin production[J]. Reaction Chemistry & Engineering, 2020, 5(2): 239-257. |
| [5] | 徐海丰. 全球乙烯产业格局变化及发展前景分析[J]. 国际石油经济, 2023, 31(1):65-82. |
| Xu H F. The change and development prospect of global ethylene industry[J]. International Petroleum Economics, 2023, 31(1): 65-82. | |
| [6] | 周强. 乙烷替代石脑油制乙烯分析探讨[J]. 齐鲁石油化工, 2017, 45(1): 79-82. |
| Zhou Q. Analysis and discussion on preparation of ethylene from ethane replacing naphtha[J]. Qilu Petrochemical Technology, 2017, 45(1): 79-82. | |
| [7] | 张来勇. 大型乙烯成套技术[M]. 北京: 石油工业出版社, 2022. |
| Zhang L Y. Large Scale Ethylene Integrated Technology [M]. Beijing: Petroleum Industry Press, 2022. | |
| [8] | Gärtner C A, van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217. |
| [9] | Gao Y F, Neal L, Ding D, et al. Recent advances in intensified ethylene production: a review[J]. ACS Catalysis, 2019, 9(9): 8592-8621. |
| [10] | 何盛宝, 侯雨璇, 王红秋. 双碳目标下乙烯生产技术发展趋势[J]. 现代化工, 2022, 42 (8): 60-64. |
| He S B, Hou Y X, Wang H Q. Development trend of ethylene production technology under “carbon emission peaking” and “carbon neutrality” target[J]. Modern Chemical Industry, 2022, 42 (8): 60-64. | |
| [39] | Dai Y H, Wu Y, Dai H, et al. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J]. Journal of Catalysis, 2021, 395: 105-116. |
| [40] | Gounden N, Friedrich H B, Mahadevaiah N, et al. Octenes and aromatics from the oxidative dehydrogenation of n-octane over Co/TiO2 catalysts[J]. Catalysis Letters, 2014, 144(12): 2043-2051. |
| [41] | Madduluri V R, Marella R K, Hanafiah M M, et al. CO2 utilization as a soft oxidant for the synthesis of styrene from ethylbenzene over Co3O4 supported on magnesium aluminate spinel: role of spinel activation temperature[J]. Scientific Reports, 2020, 10: 22170. |
| [42] | Jin Y X, Wang Y, Wang C F, et al. CO2 oxidative dehydrogenation of ethane to ethylene: reaction mechanism elucidation by tandem-reaction couplings[J]. Journal of Catalysis, 2025, 450: 116265. |
| [43] | Yao R, Pinals J, Dorakhan R, et al. Cobalt-molybdenum oxides for effective coupling of ethane activation and carbon dioxide reduction catalysis[J]. ACS Catalysis, 2022, 12(19): 12227-12245. |
| [44] | Zhang Y K, Wang W, Zhou L, et al. An active and stable catalyst of Zn modified Pt nanoparticles encapsulated within silicalite-1 zeolite for dehydrogenation of ethane[J]. Applied Surface Science, 2024, 648: 159099. |
| [45] | Qiu B C, Zhang Y K, Liu Y, et al. The state of Pt active phase and its surrounding environment during dehydrogenation of ethane to ethylene[J]. Applied Surface Science, 2021, 554: 149611. |
| [46] | Vishnuvarthan M, Murugesan V, Gianotti E, et al. Coexistence of framework Co2+ and non framework Co0 in CoAPO-5[J]. Microporous and Mesoporous Materials, 2009, 123: 91-99. |
| [47] | Wong M S, Huang H C, Ying J Y. Supramolecular-templated synthesis of nanoporous zirconia-silica catalysts[J]. Chemistry of Materials, 2002, 14(5): 1961-1973. |
| [48] | Sola A C, Homs N, de la Piscina P R. An in situ DRIFTS-MS study of the photocatalytic H2 production from ethanol(aq) vapour over Pt/TiO2 and Pt Ga/TiO2 catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(35): 16922-16928. |
| [49] | Xu D, Ding M Y, Hong X L, et al. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. ACS Catalysis, 2020, 10(24): 14516-14526. |
| [50] | Fu Q J, Wang S, Wang T, et al. Insights into the promotion mechanism of ceria-zirconia solid solution to ethane combustion over Pt-based catalysts[J]. Journal of Catalysis, 2022, 405: 129-139. |
| [11] | 杨亮, 宋庚哲, 廖多华, 等. CO2气氛下乙烷氧化脱氢制乙烯催化剂研究进展[J]. 精细化工, 2023, 40(10): 2171-2179. |
| Yang L, Song G Z, Liao D H, et al. Research progress on catalysts for oxidative dehydrogenation of ethane to ethylene under CO2 atmosphere[J]. Fine Chemicals, 2023, 40(10): 2171-2179. | |
| [12] | 刘欢, 王樱, 陈铭, 等. Co负载量对Co/TiZrO4催化CO2氧化乙烷脱氢制乙烯反应性能的影响[J]. 环境科学学报, 2022, 43(2):433-446. |
| Liu H, Wang Y, Chen M, et al. Effects of Co loading on the performance of Co/TiZrO4 catalysts for CO2 oxidative ethane dehydrogenation to ethylene[J]. Acta Scientiae Circumstantiae, 2022, 2: 433-446. | |
| [13] | 王樱,陈铭,钟智勇,等. 硅铝比对Co/SSZ-13催化CO2氧化乙烷脱氢制乙烯反应性能的影响[J]. 环境科学学报, 2023, 10: 331-342. |
| Wang Y, Chen M, Zhong Z Y, et al.Effects of Si/Al on the catalytic performance of Co/SSZ-13 catalysts for CO2 oxidative ethane dehydrogenation to ethylene[J]. Acta Scientiae Circumstantiae, 2023, 10: 331-342. |
| [1] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
| [2] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [3] | Huairong ZHOU, Jiawei YI, Abo CAO, Aoxue GUO, Dongliang WANG, Yong YANG, Siyu YANG. Integrated design and performance evaluation of co-electrolysis coupled CO2 indirect hydrogenation methanol synthesis process [J]. CIESC Journal, 2025, 76(9): 4586-4600. |
| [4] | Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production [J]. CIESC Journal, 2025, 76(9): 4882-4892. |
| [5] | Zequan LI, Tianyu CAI, Jiajun LIU, Qizhi CHEN, Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO. Synthesis and application of lignin-based flocculants [J]. CIESC Journal, 2025, 76(9): 4709-4722. |
| [6] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [7] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [8] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| [9] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [10] | Yuanshen DAI, Zhijiang SHAO, Weifeng CHEN, Ning CHEN. Dynamic prediction method of particle size distribution in ternary precursor crystallization process based on population balance equations [J]. CIESC Journal, 2025, 76(8): 4119-4128. |
| [11] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [12] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [13] | Zhenning FAN, Haining LIANG, Maoli FANG, Yifan HE, Shuai YU, Xingqing YAN, Jiaran AN, Fanfan QIAO, Jianliang YU. Research and comparison of throttling and venting characteristics of CO2 pipelines in different phase states [J]. CIESC Journal, 2025, 76(7): 3742-3751. |
| [14] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [15] | Jin LI, Shuiqing HU, Yibin WENG, Juntao JIANG, Qinghong WANG, Chunmao CHEN. Enhanced anaerobic digestion of refinery waste activated sludge based on pretreatment strategy by spend caustic [J]. CIESC Journal, 2025, 76(7): 3446-3458. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||