CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5584-5593.DOI: 10.11949/0438-1157.20250453
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Ke REN1,2(
), Xinjian LIU1,2(
), Zhonghao RAO1,2(
)
Received:2025-04-28
Revised:2025-06-11
Online:2025-12-19
Published:2025-11-25
Contact:
Xinjian LIU, Zhonghao RAO
通讯作者:
刘新健,饶中浩
作者简介:任珂(2001—),女,博士研究生,202221301015@stu.hebut.edu.cn
基金资助:CLC Number:
Ke REN, Xinjian LIU, Zhonghao RAO. Research on the enhancement and regulation mechanisms of dispersion stability of latent heat functional fluids[J]. CIESC Journal, 2025, 76(11): 5584-5593.
任珂, 刘新健, 饶中浩. 潜热型功能流体分散稳定性强化及调控机理研究[J]. 化工学报, 2025, 76(11): 5584-5593.
Add to citation manager EndNote|Ris|BibTeX
| 体系 | 尺寸/(nm×nm×nm) | 珠子数量 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| H2O | C18 | MF | SDS | Na+ | CTAB | Br- | PVA | ||
| M | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | |
| MS1 | 30×30×60 | 12000 | 1200 | 20000 | 300 | 300 | 0 | 0 | |
| MS2 | 30×30×60 | 12000 | 1200 | 20000 | 600 | 600 | 0 | 0 | |
| MS3 | 30×30×60 | 12000 | 1200 | 20000 | 900 | 900 | 0 | 0 | |
| MC1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 300 | 300 | |
| MC2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 600 | 600 | |
| MC3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 900 | 900 | |
| MP1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 300 |
| MP2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 600 |
| MP3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 900 |
Table 1 Latent heat functional fluid model parameters
| 体系 | 尺寸/(nm×nm×nm) | 珠子数量 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| H2O | C18 | MF | SDS | Na+ | CTAB | Br- | PVA | ||
| M | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | |
| MS1 | 30×30×60 | 12000 | 1200 | 20000 | 300 | 300 | 0 | 0 | |
| MS2 | 30×30×60 | 12000 | 1200 | 20000 | 600 | 600 | 0 | 0 | |
| MS3 | 30×30×60 | 12000 | 1200 | 20000 | 900 | 900 | 0 | 0 | |
| MC1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 300 | 300 | |
| MC2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 600 | 600 | |
| MC3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 900 | 900 | |
| MP1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 300 |
| MP2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 600 |
| MP3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 900 |
| 体系 | Depcm/(10-6 cm2/s) | |
|---|---|---|
| 300 K | 350 K | |
| M | 0.159 | 0.367 |
| MS1 | 0.692 | 0.949 |
| MS2 | 0.331 | 0.828 |
| MS3 | 0.170 | 0.605 |
| MC1 | 0.867 | 0.929 |
| MC2 | 0.348 | 0.740 |
| MC3 | 0.335 | 0.569 |
| MP1 | 0.403 | 0.457 |
| MP2 | 0.185 | 0.450 |
| MP3 | 0.166 | 0.403 |
Table 2 Diffusion coefficients of dispersants and microcapsules in different suspension systems
| 体系 | Depcm/(10-6 cm2/s) | |
|---|---|---|
| 300 K | 350 K | |
| M | 0.159 | 0.367 |
| MS1 | 0.692 | 0.949 |
| MS2 | 0.331 | 0.828 |
| MS3 | 0.170 | 0.605 |
| MC1 | 0.867 | 0.929 |
| MC2 | 0.348 | 0.740 |
| MC3 | 0.335 | 0.569 |
| MP1 | 0.403 | 0.457 |
| MP2 | 0.185 | 0.450 |
| MP3 | 0.166 | 0.403 |
| [1] | Xu Q, Zhu L D, Pei Y Q, et al. Heat transfer enhancement performance of microencapsulated phase change materials latent functional thermal fluid in solid/liquid phase transition regions[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124461. |
| [2] | 鲁进利, 郝英立. 细小尺度下潜热型功能热流体压降与传热特性[J]. 化工学报, 2010, 61(6): 1385-1392. |
| Lu J L, Hao Y L. Pressure drop and heat transfer characteristics of latent functional thermal fluid in mini-scale[J]. CIESC Journal, 2010, 61(6): 1385-1392. | |
| [3] | 于云雁, 赵树兴, 甄子亚, 等. 潜热型功能流体太阳能供暖集热系统集热效果实验研究[J]. 太阳能学报, 2021, 42(10): 135-139. |
| Yu Y Y, Zhao S X, Zhen Z Y, et al. Experimental research on the efficiency of solar collection system with latent functional thermal fluid for heating[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 135-139. | |
| [4] | 石姗姗, 钱钊, 姜涛, 等. 高分子相变材料的导热改性研究综述[J]. 塑料工业, 2022, 50(2): 1-5. |
| Shi S S, Qian Z, Jiang T, et al. Review on thermal conductivity modification of polymer phase change materials[J]. China Plastics Industry, 2022, 50(2): 1-5. | |
| [5] | Delgado M, Lzaro A, Mazo J, et al. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow[J]. Applied Thermal Engineering, 2012, 36: 370-377. |
| [6] | 李建立, 刘录. 用于功能热流体的相变材料微胶囊力学性能研究进展[J]. 化工进展, 2015, 34(7): 1928-1932. |
| Li J L, Liu L. Research progress in mechanical properties of microencapsulated phase change materials used as functional thermal fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1928-1932. | |
| [7] | Jin W Z, Huang Q H, Huang H M, et al. The preparation of a suspension of microencapsulated phase change material (MPCM) and thermal conductivity enhanced by MXene for thermal energy storage[J]. Journal of Energy Storage, 2023, 73: 108868. |
| [8] | 冀林仙, 史晓滨, 郑保忠. 微胶囊悬浮剂稳定性研究[J]. 农业与技术, 2009, 29(3): 48-49. |
| Ji L X, Shi X B, Zheng B Z. Study on stability of microcapsule suspending agent[J]. Agriculture & Technology, 2009, 29(3): 48-49. | |
| [9] | Chen R, Ge X, Zhong Y, et al. Experimental study of phase change microcapsule-based liquid cooling for battery thermal management[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106912. |
| [10] | López-Pedrajas D, Borreguero A M, Ramos F J, et al. Influence of the dispersion characteristics for producing thermoregulating nano phase change slurries[J]. Chemical Engineering Journal, 2023, 452: 139034. |
| [11] | Verma C, Goni L K M O, Yaagoob I Y, et al. Polymeric surfactants as ideal substitutes for sustainable corrosion protection: a perspective on colloidal and interface properties[J]. Advances in Colloid and Interface Science, 2023, 318: 102966. |
| [12] | Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108: 227-258. |
| [13] | Zhang G H, Zhao C Y. Thermal and rheological properties of microencapsulated phase change materials[J]. Renewable Energy, 2011, 36(11): 2959-2966. |
| [14] | Al-Shannaq R, Farid M, Al-Muhtaseb S, et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials[J]. Solar Energy Materials and Solar Cells, 2015, 132: 311-318. |
| [15] | Huang L, Petermann M, Doetsch C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications[J]. Energy, 2009, 34(9): 1145-1155. |
| [16] | Han F, Cao M, Lin J L, et al. Selection of dispersant and dispersion mechanism of PVP on copper powders[J]. Colloid and Polymer Science, 2024, 302(3): 355-362. |
| [17] | Xue H J, Wang X M, Xu Q, et al. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis[J]. Chemical Engineering Journal, 2022, 430: 132801. |
| [18] | Zhao X B, Han X Y, Yao Y P, et al. Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems[J]. Energy, 2022, 238: 122040. |
| [19] | Oliveira de Souza L, Cordazzo M, Silva de Souza L M, et al. Investigation of dispersion methodologies of microcrystalline and nano-fibrillated cellulose on cement pastes[J]. Cement and Concrete Composites, 2022, 126: 104351. |
| [20] | Doblas D, Kister T, Cano-Bonilla M, et al. Colloidal solubility and agglomeration of apolar nanoparticles in different solvents[J]. Nano Letters, 2019, 19(8): 5246-5252. |
| [21] | Devendiran D K, Amirtham V A. A review on preparation, characterization, properties and applications of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 21-40. |
| [22] | Liu C Z, Rao Z H, Zhao J T, et al. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. |
| [23] | Marrink S J, Risselada H J, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations[J]. The Journal of Physical Chemistry. B, 2007, 111(27): 7812-7824. |
| [24] | Ruiz-Morales Y, Romero-Martínez A. Coarse-grain molecular dynamics simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution[J]. The Journal of Physical Chemistry. B, 2018, 122(14): 3931-3943. |
| [25] | Wei D W, Fang Y, Liu L, et al. On the intermolecular interactions and mechanical properties of polyvinyl alcohol/inositol supramolecular complexes[J]. Sustainable Materials and Technologies, 2024, 41: e00990. |
| [26] | Illa-Tuset S, Malaspina D C, Faraudo J. Coarse-grained molecular dynamics simulation of the interface behaviour and self-assembly of CTAB cationic surfactants[J]. Physical Chemistry Chemical Physics, 2018, 20(41): 26422-26430. |
| [27] | Rossi G, Giannakopoulos I, Monticelli L, et al. A MARTINI coarse-grained model of a thermoset polyester coating[J]. Macromolecules, 2011, 44(15): 6198-6208. |
| [28] | Liu C Z, Bao Y B, Huang K, et al. Experimental study on natural convection heat transfer performance of microencapsulated phase change material slurry in a square cavity[J]. Applied Thermal Engineering, 2025, 259: 124883. |
| [29] | Zhang J J, Zhu D L, Liu Y, et al. Experimental investigation of spray cooling heat transfer with microcapsule phase change suspension[J]. International Journal of Heat and Mass Transfer, 2024, 229: 125720. |
| [30] | Xiang H, He Z Y, Tang H J, et al. Healing behavior of thermo-oxygen aged asphalt based on molecular dynamics simulations[J]. Construction and Building Materials, 2022, 349: 128740. |
| [31] | Sun D L, Zhou J. Molecular simulation of oxygen sorption and diffusion in the poly(lactic acid)[J]. Chinese Journal of Chemical Engineering, 2013, 21(3): 301-309. |
| [32] | Santos A P, Panagiotopoulos A Z. Determination of the critical micelle concentration in simulations of surfactant systems[J]. The Journal of Chemical Physics, 2016, 144(4): 044709. |
| [33] | Gao C Q, Guo M Y, Liu Y K, et al. Surface modification methods and mechanisms in carbon nanotubes dispersion[J]. Carbon, 2023, 212: 118133. |
| [34] | Song S H, Koelsch P, Weidner T, et al. Sodium dodecyl sulfate adsorption onto positively charged surfaces: monolayer formation with opposing headgroup orientations[J]. Langmuir, 2013, 29(41): 12710-12719. |
| [35] | Wang W T, Zhang B G, Shi Y H, et al. Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance[J]. Applied Surface Science, 2022, 597: 153703. |
| [36] | Chang X J, Henderson W M, Bouchard D C. Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response[J]. Environmental Science & Technology, 2015, 49(11): 6645-6653. |
| [1] | Shuai ZHANG, Jiayu XU, Leina HUA, Wei GE. Coupled simulation method of CG-DPM and MP-PIC for gas-solid system [J]. CIESC Journal, 2025, 76(9): 4412-4424. |
| [2] | Bin LAN, Shuai LU, Ji XU, Ming ZHAI, Junwu WANG. CFD-DEM-IBM simulation of fluidized bed direct reduction of magnetite [J]. CIESC Journal, 2024, 75(12): 4477-4489. |
| [3] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
| [4] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
| [5] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
| [6] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
| [7] | Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431. |
| [8] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
| [9] | He ZHENG, Shengjiang YANG, Yongchao ZHENG, Yan CUI, Xuan GUO, Jinyi ZHONG, Jian ZHOU. Molecular dynamics simulation of denaturation of DhaA induced by urea and dimethyl sulfoxide [J]. CIESC Journal, 2019, 70(11): 4337-4345. |
| [10] | Wenjun XIANG, Zhaoju ZHU, Dan LIU, Lüshan ZHOU. Molecular dynamics simulations core-shell self-assembly from amphiphilic polymer and hydrophobic nanoparticle [J]. CIESC Journal, 2019, 70(1): 345-354. |
| [11] | QI Chang, LU Diannan, LIU Yongmin. Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field [J]. CIESC Journal, 2018, 69(8): 3338-3347. |
| [12] | XU Shang, ZHAO Lingling, CAI Zhuangli, CHEN Chao. Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride [J]. CIESC Journal, 2017, 68(9): 3321-3327. |
| [13] | NAN Yiling, KONG Xian, LI Jipeng, LU Diannan. Non-equilibrium molecular dynamics simulation of water flow inside nano-slit [J]. CIESC Journal, 2017, 68(5): 1786-1793. |
| [14] | FENG Zhiming, LI Weiwei, LI Xue, ZHAO Yang, XIE Xiaofeng, CHAI Chunpeng, LUO Yunjun. Molecular dynamics simulation on effect of different carboxylic acid group contents on norbornene derivatives proton exchange membranes bearing bifunctional groups [J]. CIESC Journal, 2016, 67(S1): 253-259. |
| [15] | SONG Chengjian, QU Jianlin, YANG Zhiyuan, WANG Guangheng, YANG Fusheng, ZHOU Anning. Matching rules between dispersants and Shenfu coal slurriability [J]. CIESC Journal, 2016, 67(9): 3965-3971. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||