CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4477-4489.DOI: 10.11949/0438-1157.20240551
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bin LAN1,3,4(), Shuai LU3, Ji XU3, Ming ZHAI1(
), Junwu WANG2,3(
)
Received:
2024-05-23
Revised:
2024-07-08
Online:
2025-01-03
Published:
2024-12-25
Contact:
Ming ZHAI, Junwu WANG
兰斌1,3,4(), 路帅3, 徐骥3, 翟明1(
), 王军武2,3(
)
通讯作者:
翟明,王军武
作者简介:
兰斌(1993—),男,博士,1031557180@qq.com
基金资助:
CLC Number:
Bin LAN, Shuai LU, Ji XU, Ming ZHAI, Junwu WANG. CFD-DEM-IBM simulation of fluidized bed direct reduction of magnetite[J]. CIESC Journal, 2024, 75(12): 4477-4489.
兰斌, 路帅, 徐骥, 翟明, 王军武. 流化床直接还原磁铁矿的CFD-DEM-IBM模拟[J]. 化工学报, 2024, 75(12): 4477-4489.
1 | Xiong D H, Lu L M, Holmes R J. Physical separation of iron ore: magnetic separation[M]//Lu L M. Iron Ore. 2nd ed. Amsterdam: Elsevier, 2022: 309-332. |
2 | Zhang H Q, Zhang P F, Zhou F, et al. Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: a review[J]. International Journal of Mining Science and Technology, 2022, 32(4): 865-876. |
3 | Dutta S K, Chokshi Y B. Basic Concepts of Iron and Steel Making[M]. Singapore: Springer, 2020. |
4 | Soni R K, Chinthapudi E, Tripathy S K, et al. Review on the chemical reduction modelling of hematite iron ore to magnetite in fluidized bed reactor[J]. Reviews in Chemical Engineering, 2022, 39(8): 1-44. |
5 | Lu L, Pan J, Zhu D. Quality requirements of iron ore for iron production[M]//Lu L M. Iron Ore. 2nd ed. Amsterdam: Elsevier, 2015: 475-504. |
6 | Sun T H, Shen Y F, Jia J P. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer[J]. Environmental Science & Technology, 2014, 48(4): 2263-2272. |
7 | Yi S H, Choi M E, Kim D H, et al. FINEX® as an environmentally sustainable ironmaking process[J]. Ironmaking & Steelmaking, 2019, 46(7): 625-631. |
8 | Jeong S J. System dynamics approach for the impacts of FINEX technology and carbon taxes on steel demand: case study of the POSCO[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(1): 85-93. |
9 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008. |
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008. | |
10 | He S Y, Sun H Y, Hu C Q, et al. Direct reduction of fine iron ore concentrate in a conical fluidized bed[J]. Powder Technology, 2017, 313: 161-168. |
11 | Holappa L. Recent achievements in iron and steel technology[J]. Journal of Chemical Technology & Metallurgy, 2017, 52 (2): 159-167. |
12 | An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226: 862-880. |
13 | Patisson F, Mirgaux O. Hydrogen ironmaking: how it works[J]. Metals, 2020, 10(7): 922. |
14 | Spreitzer D, Schenk J. Reduction of iron oxides with hydrogen—a review[J]. Steel Research International, 2019, 90(10): 1900108. |
15 | Shi J Y, Donskoi E, McElwain D L S, et al. Modelling the reduction of an iron ore-coal composite pellet with conduction and convection in an axisymmetric temperature field[J]. Mathematical and Computer Modelling, 2005, 42(1/2): 45-60. |
16 | Valipour M. Mathematical modeling of a non-catalytic gas-solid reaction: hematite pellet reduction with syngas[J]. Scientia Iranica, 2009, 16(2): 108-124. |
17 | Tang H, Guo Z, Kitagawa K. Simulation study on performance of Z-path moving-fluidized bed for gaseous reduction of iron ore fines[J]. ISIJ international, 2012, 52(7): 1241-1249. |
18 | Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach[J]. Metallurgical and Materials Transactions B, 2014, 45: 2395-2413. |
19 | Nouri S, Ebrahim H A, Jamshidi E. Simulation of direct reduction reactor by the grain model[J]. Chemical Engineering Journal, 2011, 166(2): 704-709. |
20 | Ariyan Z G, Mohammad Sadegh V, Mojtaba B. Numerical analysis of complicated heat and mass transfer inside a wustite pellet during reducing to sponge iron by H2 and CO gaseous mixture[J]. Journal of Iron and Steel Research International, 2016, 23(11): 1142-1150. |
21 | Kinaci M E, Lichtenegger T, Schneiderbauer S. A CFD-DEM model for the simulation of direct reduction of iron-ore in fluidized beds[J]. Chemical Engineering Science, 2020, 227: 115858. |
22 | Kinaci M E, Lichtenegger T, Schneiderbauer S. Direct reduction of iron-ore in fluidized beds[J]. Computer Aided Chemical Engineering, 2018, 43: 217-222. |
23 | Schneiderbauer S, Pirker S, Puttinger S, et al. A Lagrangian-Eulerian hybrid model for the simulation of poly-disperse fluidized beds: application to industrial-scale olefin polymerization[J]. Powder Technology, 2017, 316: 697-710. |
24 | Kinaci M E, Lichtenegger T, Schneiderbauer S. Modelling of chemical reactions in metallurgical processes[C]// Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. 2017. |
25 | Sakai M, Takahashi H, Pain C C, et al. Study on a large-scale discrete element model for fine particles in a fluidized bed[J]. Advanced Powder Technology, 2012, 23(5): 673-681. |
26 | Sakai M, Abe M, Shigeto Y, et al. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244: 33-43. |
27 | Washino K, Hsu C H, Kawaguchi T, et al. Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, Japan, 2007, 44: 198-205. |
28 | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
29 | Lan B, Xu J, Zhao P, et al. Long-time coarse-grained CFD-DEM simulation of residence time distribution of polydisperse particles in a continuously operated multiple-chamber fluidized bed[J]. Chemical Engineering Science, 2020, 219: 115599. |
30 | Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method-EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135. |
31 | Xu J, Liu X C, Hu S W, et al. Virtual process engineering on a three-dimensional circulating fluidized bed with multiscale parallel computation[J]. Journal of Advanced Manufacturing and Processing, 2019, 1(1/2): e10014. |
32 | Lan B, Xu J, Zhao P, et al. Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds[J]. Chemical Engineering Science, 2021, 244: 116809. |
33 | Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
34 | Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
35 | Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348. |
36 | Mokhtar M A, Kuwagi K, Takami T, et al. Validation of the similar particle assembly (SPA) model for the fluidization of Geldart's Group A and D particles[J]. AIChE Journal, 2012, 58(1): 87-98. |
37 | Chu K W, Chen J, Yu A B. Applicability of a coarse-grained CFD-DEM model on dense medium cyclone[J]. Minerals Engineering, 2016, 90: 43-54. |
38 | Hu C S, Luo K, Wang S, et al. Influences of operating parameters on the fluidized bed coal gasification process: a coarse-grained CFD-DEM study[J]. Chemical Engineering Science, 2019, 195: 693-706. |
39 | Berrouk A S, Pornsilph C, Bale S S, et al. Simulation of a large-scale FCC riser using a combination of MP-PIC and four-lump oil-cracking kinetic models[J]. Energy & Fuels, 2017, 31(5): 4758-4770. |
40 | Madlmeir S, Radl S. A coarse-grained parcel method for heat and mass transfer simulations of spray coating processes[J]. Advanced Powder Technology, 2022, 33(6): 103590. |
41 | Tausendschön J, Kolehmainen J, Sundaresan S, et al. Coarse graining Euler-Lagrange simulations of cohesive particle fluidization[J]. Powder Technology, 2020, 364: 167-182. |
42 | de Munck M, Peters E A J F, Kuipers J A M. CFD-DEM fluidized bed drying study using a coarse-graining technique[J]. Industrial & Engineering Chemistry Research, 2023, 62: 20911-20920. |
43 | de Munck M, Peters E A J F, Kuipers J A M. Fluidized bed gas-solid heat transfer using a CFD-DEM coarse-graining technique[J]. Chemical Engineering Science, 2023, 280: 119048. |
44 | Kanjilal S, Schneiderbauer S. A revised coarse-graining approach for simulation of highly poly-disperse granular flows[J]. Powder Technology, 2021, 385: 517-527. |
45 | Lan B, Xu J, Lu S, et al. Direct reduction of iron-ore with hydrogen in fluidized beds: a coarse-grained CFD-DEM-IBM study[J]. Powder Technology, 2024, 438: 119624. |
46 | Spitzer R, Manning F, Philbrook W. Generalized model for the gaseous, topochemical reduction of porous hematite spheres[J]. AIME Met. Soc. Trans., 1966, 236 (12): 1715-1724. |
47 | Zhao P, Xu J, Ge W, et al. A CFD-DEM-IBM method for Cartesian grid simulation of gas-solid flow in complex geometries[J]. Chemical Engineering Journal, 2020, 389: 124343. |
48 | Zhao P, Xu J, Liu X C, et al. A computational fluid dynamics-discrete element-immersed boundary method for Cartesian grid simulation of heat transfer in compressible gas-solid flow with complex geometries[J]. Physics of Fluids, 2020, 32(10): 103306. |
49 | Lan B, Zhao P, Xu J, et al. CFD-DEM-IBM simulation of particle drying processes in gas-fluidized beds[J]. Chemical Engineering Science, 2022, 255: 117653. |
50 | Zhao P, Xu J, Chang Q, et al. Euler-Lagrange simulation of dense gas-solid flow with local grid refinement[J]. Powder Technology, 2022, 399: 117199. |
51 | Zhao P, Xu J, Zhao B D, et al. Cartesian grid simulation of reacting gas-solid flow using CFD-DEM-IBM method[J]. Powder Technology, 2022, 407: 117651. |
52 | Lan B, Zhao P, Xu J, et al. The critical role of scale resolution in CFD simulation of gas-solid flows: a heat transfer study using CFD-DEM-IBM method[J]. Chemical Engineering Science, 2023, 266: 118268. |
53 | Lu L Q, Morris A, Li T W, et al. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds[J]. International Journal of Heat and Mass Transfer, 2017, 111: 723-735. |
54 | Du Z, Liu J Y, Liu F, et al. Relationship of particle size, reaction and sticking behavior of iron ore fines toward efficient fluidized bed reduction[J]. Chemical Engineering Journal, 2022, 447: 137588. |
[1] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[2] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
[3] | Lin JIANG, Tongwang ZHANG, Rongzheng LIU, Youlin SHAO, Bing LIU, Malin LIU. Magnetic particle tracing method for measuring fluidization behavior of high-density particles [J]. CIESC Journal, 2024, 75(12): 4453-4467. |
[4] | Juhui CHEN, Ran AN, Dan LI, Haoming GAO, Kun ZHANG. Effect of van der Waals forces on the motion of magnetic field fluidized nanoparticles [J]. CIESC Journal, 2024, 75(10): 3518-3527. |
[5] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[6] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[7] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[8] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[9] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[10] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[11] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[12] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[13] | Nan ZHOU, Zan WANG, Yingjuan SHAO, Wenqi ZHONG. Experimental study on attrition characteristics of coal tar pitch particles during gas-solid fluidization [J]. CIESC Journal, 2022, 73(2): 587-594. |
[14] | Yongli MA, Mingyan LIU, Chen LI, Zongding HU. Research progress of liquid-solid and gas-liquid-solid mini- or micro-fluidizations [J]. CIESC Journal, 2022, 73(1): 46-58. |
[15] | ZHANG Xi,ZHANG Lilong,LI Rui,WU Yulong. Life cycle assessment of straw fast pyrolysis based on energy integration [J]. CIESC Journal, 2021, 72(5): 2792-2800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||