CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5877-5889.DOI: 10.11949/0438-1157.20250570
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaoping LUO(
), Lan XIAO, Jiayu ZHANG
Received:2025-05-24
Revised:2025-07-25
Online:2025-12-19
Published:2025-11-25
Contact:
Xiaoping LUO
通讯作者:
罗小平
作者简介:罗小平(1967—),男,博士,教授,mmxpluo@scut.edu.cn
基金资助:CLC Number:
Xiaoping LUO, Lan XIAO, Jiayu ZHANG. Flow boiling heat transfer of phase separation structure microchannels under pulsating pressure[J]. CIESC Journal, 2025, 76(11): 5877-5889.
罗小平, 肖岚, 张嘉宇. 脉动压力作用下相分离结构微细通道流动沸腾传热[J]. 化工学报, 2025, 76(11): 5877-5889.
Add to citation manager EndNote|Ris|BibTeX
饱和温度 Tsat/℃ | 液相密度 | 气相密度 | 液相黏度 | 液相热导率 | 液相比热容 cp,l /(J(kg·K)) | 汽化潜热 hf,g/(J/kg) | 表面张力 |
|---|---|---|---|---|---|---|---|
| 78.34 | 736.49 | 1.65 | 0.44 | 0.15 | 2.93 | 846.75 | 16.75 |
Table 1 Physical properties of ethanol
饱和温度 Tsat/℃ | 液相密度 | 气相密度 | 液相黏度 | 液相热导率 | 液相比热容 cp,l /(J(kg·K)) | 汽化潜热 hf,g/(J/kg) | 表面张力 |
|---|---|---|---|---|---|---|---|
| 78.34 | 736.49 | 1.65 | 0.44 | 0.15 | 2.93 | 846.75 | 16.75 |
| 测量仪器 | 测量值 | 设备型号 | 量程 | 精度 |
|---|---|---|---|---|
| 热电阻 | 温度/℃ | PT-100 | 0~200 | 0.1℃ |
| 转子流量计 | 流量/(L/h) | LZB-WS-10 | 6~60 | 2.5% |
| 压力传感器 | 压力/kPa | HY-131 | 0~100 | 0.2% |
| 直流高压静电发生器 | 电压/kV | DW-P503 | 0~50 | 0.5% |
Table 2 Instrument accuracy
| 测量仪器 | 测量值 | 设备型号 | 量程 | 精度 |
|---|---|---|---|---|
| 热电阻 | 温度/℃ | PT-100 | 0~200 | 0.1℃ |
| 转子流量计 | 流量/(L/h) | LZB-WS-10 | 6~60 | 2.5% |
| 压力传感器 | 压力/kPa | HY-131 | 0~100 | 0.2% |
| 直流高压静电发生器 | 电压/kV | DW-P503 | 0~50 | 0.5% |
| 测量物理参数 | 最大不确定度/% |
|---|---|
| 热通量qeff | 3.31 |
| 单相段长度Lsp | 2.76 |
| 质量流率G | 2.50 |
| 局部饱和传热系数h | 6.29 |
Table 3 Maximum relative error of indirect physical quantities
| 测量物理参数 | 最大不确定度/% |
|---|---|
| 热通量qeff | 3.31 |
| 单相段长度Lsp | 2.76 |
| 质量流率G | 2.50 |
| 局部饱和传热系数h | 6.29 |
Fig. 10 Heat transfer coefficient of saturated boiling under the synergistic effect of different types of fluctuating pressure and phase separation structure
| 工况 | 热通量/(kW/m2) | 工况 | 热通量/(kW/m2) |
|---|---|---|---|
| A | 15.05 | H | 77.58 |
| B | 23.27 | I | 87.61 |
| C | 32.33 | J | 97.08 |
| D | 40.62 | K | 105.36 |
| E | 50.85 | L | 114.86 |
| F | 60.02 | M | 124.89 |
| G | 68.29 |
Table 4 Operating range of heat flux density
| 工况 | 热通量/(kW/m2) | 工况 | 热通量/(kW/m2) |
|---|---|---|---|
| A | 15.05 | H | 77.58 |
| B | 23.27 | I | 87.61 |
| C | 32.33 | J | 97.08 |
| D | 40.62 | K | 105.36 |
| E | 50.85 | L | 114.86 |
| F | 60.02 | M | 124.89 |
| G | 68.29 |
| [1] | 江河, 袁俊飞, 王林, 等. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
| Jiang H, Yuan J F, Wang L, et al. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels[J]. CIESC Journal, 2023, 74(S1): 235-244. | |
| [2] | Wang B, Hu Y W, He Y R, et al. Dynamic instabilities of flow boiling in micro-channels: a review[J]. Applied Thermal Engineering, 2022, 214: 118773. |
| [3] | 刘文竹, 云和明, 王宝雪, 等. 基于场协同和火积耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
| Liu W Z, Yun H M, Wang B X, et al. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
| [4] | 邬智宇, 张伟, 孙远志, 等. 微通道内流动沸腾强化换热研究进展[J]. 微纳电子技术, 2019, 56(2): 126-132. |
| Wu Z Y, Zhang W, Sun Y Z, et al. Research progress on the flow boiling heat transfer enhancement in the microchannel[J]. Micronanoelectronic Technology, 2019, 56(2): 126-132. | |
| [5] | 谭丕强, 刘晓扬, 杨晓美, 等. 车用燃料电池热管理技术的研究进展[J]. 太阳能学报, 2025, 46(9): 390-398. |
| Tan P Q, Liu X Y, Yang X M, et al. Research progress of thermal management for automotive fuel cells[J]. Acta Energiae Solaris Sinica, 2025, 46(9): 390-398. | |
| [6] | Rui Z L, Sun H, Ma J, et al. Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system[J]. Energy, 2023, 282: 128747. |
| [7] | Gugulothu R, Reddy K V K, Somanchi N S, et al. A review on enhancement of heat transfer techniques[J]. Materials Today: Proceedings, 2017, 4(2): 1051-1056. |
| [8] | Mandev E, Manay E. Effects of surface roughness in multiple microchannels on mixed convective heat transfer[J]. Applied Thermal Engineering, 2022, 217: 119102. |
| [9] | Heidarian A, Rafee R, Valipour M S. Hydrodynamic analysis of the nanofluids flow in a microchannel with hydrophobic and superhydrophobic surfaces[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124: 266-275. |
| [10] | Mukherjee S, Jana S, Chandra Mishra P, et al. Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube[J]. International Journal of Thermal Sciences, 2021, 159: 106581. |
| [11] | Zhou J Y, Luo X P, He B L, et al. Comprehensive evaluation of graphene/R141b nanofluids enhanced heat transfer performance of minichannel heat sinks[J]. Powder Technology, 2022, 397: 116997. |
| [12] | Li T F, Luo X P, He B L, et al. Flow boiling heat transfer enhancement in vertical minichannel heat sink with non-uniform microcavity arrays under electric field[J]. Experimental Thermal and Fluid Science, 2023, 149: 110997. |
| [13] | Saadatmand A, Goharkhah M, Nejad A M. Heat transfer enhancement in mini channel heat sinks utilizing corona wind: a numerical study[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121970. |
| [14] | Rahman M E, Weibel J A. Mapping the amplitude and frequency of pressure drop oscillations via a transient numerical model to assess their severity during microchannel flow boiling[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123065. |
| [15] | AbdulHussein W A, Abed A M, Mohammed D B, et al. Investigation of boiling process of different fluids in microchannels and nanochannels in the presence of external electric field and external magnetic field using molecular dynamics simulation[J]. Case Studies in Thermal Engineering, 2022, 35: 102105. |
| [16] | Mehrizi A A, Besharati F, Jahanian O, et al. Numerical investigation of conjugate heat transfer in a microchannel with a hydrophobic surface utilizing nanofluids under a magnetic field[J]. Physics of Fluids, 2021, 33(5): 052002. |
| [17] | Yang P, Zhang Y H, Wang X F, et al. Heat transfer measurement and flow regime visualization of two-phase pulsating flow in an evaporator[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1014-1024. |
| [18] | Jiang X C, Zhang S W, Li Y J, et al. High performance heat sink with counter flow diverging microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120344. |
| [19] | Jiang X C, Waqar Ali Shah S, Liu J, et al. Design of micro-nano structures for counter flow diverging microchannel heat sink with extraordinarily high energy efficiency[J]. Applied Thermal Engineering, 2022, 209: 118229. |
| [20] | Mohiuddin A, Loganathan R, Gedupudi S. Experimental investigation of flow boiling in rectangular mini/micro-channels of different aspect ratios without and with vapour venting membrane[J]. Applied Thermal Engineering, 2020, 168: 114837. |
| [21] | Sharma D, Ghosh D P, Saha S K, et al. Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1249-1259. |
| [22] | Yeszhanov A B, Korolkov I V, Dosmagambetova S S, et al. Recent progress in the membrane distillation and impact of track-etched membranes[J]. Polymers, 2021, 13(15): 2520. |
| [23] | Wu X Q, Wu X, Wang T Y, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation[J]. Journal of Membrane Science, 2020, 606: 118075. |
| [24] | Su Q W, Zhang J Y, Zhang L Z. Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination[J]. Desalination, 2020, 476: 114246. |
| [25] | Li Y, Wu H Y. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122500. |
| [26] | Xu G Q, Fu J, Quan Y K, et al. Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (MM) at supercritical pressures for medium/high temperature ORC applications[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119852. |
| [27] | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
| [28] | Lee P S, Garimella S V. Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 789-806. |
| [29] | Habibishandiz M, Saghir M Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms[J]. Thermal Science and Engineering Progress, 2022, 30: 101267. |
| [30] | Qu W L, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks (Ⅰ): Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
| [31] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| [1] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [2] | Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids [J]. CIESC Journal, 2025, 76(8): 4017-4029. |
| [3] | Xiaotian MI, Hongchen LIU, Kejun WANG, Wenna TANG, Yongwei XU, Mei YANG. Mass transfer study of CO2 absorption by TETA/DEEA biphasic absorbent in the microchannel [J]. CIESC Journal, 2025, 76(6): 2667-2677. |
| [4] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
| [5] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
| [6] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
| [7] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
| [8] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
| [9] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
| [10] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
| [11] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
| [12] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
| [13] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
| [14] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
| [15] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||