CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2455-2464.DOI: 10.11949/0438-1157.20240176
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lichang FANG(), Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG(
), Ying CHEN
Received:
2024-02-18
Revised:
2024-04-26
Online:
2024-08-09
Published:
2024-07-25
Contact:
Zhibin WANG
方立昌(), 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬(
), 陈颖
通讯作者:
王智彬
作者简介:
方立昌(2000—),男,本科生,2632249533@qq.com
基金资助:
CLC Number:
Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry[J]. CIESC Journal, 2024, 75(7): 2455-2464.
方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464.
材料 | ρ/(kg·m-3) | cp /(J·kg-1·K-1) | k/(W·m-1·K-1) | μ/(Pa·s) |
---|---|---|---|---|
正二十烷 (固态/液态) | 815.0/780.0 | 1920.0/2460.0 | 0.150 | — |
PMMA(壳层) | 1180.0 | 1440.0 | 0.184 | — |
MEPCM | 849.8 | 2047.5 | 0.140 | — |
water | ρf | cp, f | kf | μf |
Table 1 Physical property parameters of materials
材料 | ρ/(kg·m-3) | cp /(J·kg-1·K-1) | k/(W·m-1·K-1) | μ/(Pa·s) |
---|---|---|---|---|
正二十烷 (固态/液态) | 815.0/780.0 | 1920.0/2460.0 | 0.150 | — |
PMMA(壳层) | 1180.0 | 1440.0 | 0.184 | — |
MEPCM | 849.8 | 2047.5 | 0.140 | — |
water | ρf | cp, f | kf | μf |
网格数/个 | 出口流体 温差/K | 温差误差百分比/% | 压降/Pa | 压降误差百分比/% |
---|---|---|---|---|
358400 | 28.14060 | 0.22 | 133.36781 | 3.66 |
448000 | 28.13032 | 0.19 | 133.98217 | 3.22 |
716800 | 28.12691 | 0.18 | 135.17545 | 2.36 |
896000 | 28.11733 | 0.14 | 137.15393 | 0.93 |
1792000 | 28.07688 | — | 138.43996 | — |
Table 2 Grid sensitivity analysis using MEPCMS
网格数/个 | 出口流体 温差/K | 温差误差百分比/% | 压降/Pa | 压降误差百分比/% |
---|---|---|---|---|
358400 | 28.14060 | 0.22 | 133.36781 | 3.66 |
448000 | 28.13032 | 0.19 | 133.98217 | 3.22 |
716800 | 28.12691 | 0.18 | 135.17545 | 2.36 |
896000 | 28.11733 | 0.14 | 137.15393 | 0.93 |
1792000 | 28.07688 | — | 138.43996 | — |
工况编号 | 高功率芯片 | 低功率芯片 |
---|---|---|
Ⅰ | chip 1~chip 4 | chip 5~chip 8 |
Ⅱ | chip 2~chip 5 | chip 1、chip 6~chip 8 |
Ⅲ | chip 3~chip 6 | chip 1~chip 2、chip 7~chip 8 |
Ⅳ | chip 4~chip 7 | chip 1~chip 3、chip 8 |
Ⅴ | chip 5~chip 8 | chip 1~chip 4 |
Table 3 Chip power non-uniform distribution condition
工况编号 | 高功率芯片 | 低功率芯片 |
---|---|---|
Ⅰ | chip 1~chip 4 | chip 5~chip 8 |
Ⅱ | chip 2~chip 5 | chip 1、chip 6~chip 8 |
Ⅲ | chip 3~chip 6 | chip 1~chip 2、chip 7~chip 8 |
Ⅳ | chip 4~chip 7 | chip 1~chip 3、chip 8 |
Ⅴ | chip 5~chip 8 | chip 1~chip 4 |
1 | Zhou W N, Dong K J, Sun Q, et al. Research progress of the liquid cold plate cooling technology for server electronic chips: a review[J]. International Journal of Energy Research, 2022, 46(9): 11574-11595. |
2 | Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
3 | Vasileska D. Modeling thermal effects in nano-devices[J]. Microelectronic Engineering, 2013, 109: 163-167. |
4 | Ansari D, Kim K Y. Hotspot thermal management using a microchannel-pinfin hybrid heat sink[J]. International Journal of Thermal Sciences, 2018, 134: 27-39. |
5 | Maganti L S, Dhar P, Sundararajan T, et al. Mitigating non-uniform heat generation induced hot spot(s) in multicore processors using nanofluids in parallel microchannels[J]. International Journal of Thermal Sciences, 2018, 125: 185-196. |
6 | Hao X H, Peng B, Xie G N, et al. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering, 2016, 100: 170-178. |
7 | Mahajan R, Chiu C, Chrysler G. Cooling a microprocessor chip[J]. Proceedings of the IEEE, 2006, 94: 1476-1486. |
8 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
9 | Siddique A, Sakalkale K, Saha S K, et al. Investigation of flow distribution and effect of aspect ratio on critical heat flux in multiple parallel microchannel flow boiling[J]. Heat and Mass Transfer, 2021, 57(4): 647-663. |
10 | 聂晓蕾, 余灏成, 朱婉婷, 等. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价[J]. 物理学报, 2022, 71(15): 235-244. |
Nie X L, Yu H C, Zhu W T, et al. Design,fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices[J]. Acta Physica Sinica, 2022, 71(15): 235-244. | |
11 | Fan Y, Zhao X D, Li G Q, et al. Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system[J]. Energy, 2019, 171: 566-580. |
12 | Hasan M I. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension[J]. Applied Thermal Engineering, 2011, 31(6/7): 1068-1075. |
13 | Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
14 | Wang F X, Lin W Z, Ling Z Y, et al. A comprehensive review on phase change material emulsions: fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
15 | 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟[J]. 物理学报, 2012, 61(3): 247-259. |
Zhang M K, Chen S, Shang Z. Numerical simulation of a droplet motion in a grooved microchannel[J]. Acta Physica Sinica, 2012, 61(3): 247-259. | |
16 | 郭义丰, 王智彬, 贾莉斯, 等. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟[J]. 物理学报, 2023, 72(10): 273-284. |
Guo Y F, Wang Z B, Jia L S, et al. Numerical simulation of inhibition characteristics of wall temperature rise of phase change microcapsule in liquid-cooled microchannel[J]. Acta Physica Sinica, 2023, 72(10): 273-284. | |
17 | Song K X, Guo Y F, Wang Z B, et al. Numerical simulation study on heat transfer characteristics of particle-loaded flow in microchannels[J]. Chemical Engineering & Technology, 2024. 47(2): 387-395. |
18 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
19 | Zhang G H, Cui G M, Dou B L, et al. An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux[J]. Energy Conversion and Management, 2018, 171: 699-709. |
20 | Chen M, Wang Y, Liu Z M. Experimental study on micro-encapsulated phase change material slurry flowing in straight and wavy microchannels[J]. Applied Thermal Engineering, 2021, 190: 116841. |
21 | Rajabi Far B, Mohammadian S K, Khanna S K, et al. Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry[J]. International Journal of Heat and Mass Transfer, 2015, 83: 136-145. |
22 | Hu X X, Zhang Y P. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172. |
23 | Dai H, Chen W. Numerical investigation of heat transfer in the double-layered minichannel with microencapsulated phase change suspension[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104918. |
24 | Languri E M, Rokni H B, Alvarado J, et al. Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: a numerical and analytical study[J]. International Journal of Heat and Mass Transfer, 2018, 118: 872-878. |
25 | Alquaity A B S, Al-Dini S A, Yilbas B S. Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2013, 23(2): 233-247. |
26 | Xia G D, Ma D D, Zhai Y L, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure[J]. Energy Conversion and Management, 2015, 105: 848-857. |
27 | Dammel F, Stephan P. Heat transfer to suspensions of microencapsulated phase change material flowing through minichannels[J]. Journal of Heat Transfer, 2012, 134(2): 1. |
28 | Yang L, Liu S L, Zheng H F. A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109312. |
29 | Chai L, Shaukat R, Wang L, et al. A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks[J]. Applied Thermal Engineering, 2018, 135: 334-349. |
30 | Mahdavi M, Sharifpur M, Meyer J P. CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches[J]. International Journal of Heat and Mass Transfer, 2015, 88: 803-813. |
31 | Maxwell J C A. A treatise on electricity and magnetism[J]. Nature, 1873, 7: 478-480. |
32 | Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanics, 1977, 83: 97-117. |
33 | Shi X J, Li S, Wei Y D, et al. Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel[J]. International Communications in Heat and Mass Transfer, 2018, 90: 111-120. |
34 | Mohammadpour J, Lee A, Mozafari M, et al. Evaluation of Al2O3-water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models[J]. International Journal of Thermal Sciences, 2021, 161: 106705. |
35 | Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55: 193-208. |
36 | Ounis H, Ahmadi G, McLaughlin J B. Brownian diffusion of submicrometer particles in the viscous sublayer[J]. Journal of Colloid and Interface Science, 1991, 143(1): 266-277. |
37 | Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows(part Ⅰ): Fundamentals and theory[J]. Physics Reports, 2019, 790: 1-48. |
38 | Kumari M, Gorla R S R. Natural convection heat and mass transfer from a sphere in non-Newtonian nanofluids[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228(3): 129-138. |
39 | McNab G S, Meisen A. Thermophoresis in liquids[J]. Journal of Colloid and Interface Science, 1973, 44(2): 339-346. |
40 | Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J]. Aerosol Science Technology, 1992, 16(4): 209-226. |
41 | Ranz W E, Marshall W R. Evaporation from drops(part Ⅰ)[J]. Chemical Engineering Progress, 1952, 48(3): 141-148. |
42 | Rao Y, Dammel F, Stephan P, et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels[J]. Heat and Mass Transfer, 2007, 44(2): 175-186. |
43 | Zeng R L, Wang X, Chen B J, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux[J]. Applied Energy, 2009, 86(12): 2661-2670. |
[1] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[2] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
[3] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[4] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[5] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[6] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[7] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[8] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[9] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[10] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[11] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[12] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[13] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[14] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[15] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||