CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6626-6632.DOI: 10.11949/0438-1157.20250667
• Energy and environmental engineering • Previous Articles Next Articles
Bo LIU(
), Haohui HUANG, Qiyun LI, Chenmao SUN, Jie FENG
Received:2025-06-20
Revised:2025-09-14
Online:2026-01-23
Published:2025-12-31
Contact:
Bo LIU
通讯作者:
刘博
作者简介:刘博(1993—),男,博士,讲师, hdbdpeliubo@ncepu.edu.cn
基金资助:CLC Number:
Bo LIU, Haohui HUANG, Qiyun LI, Chenmao SUN, Jie FENG. Optimization of radiative cooling performance of microstructure based on machine learning model and particle swarm algorithm[J]. CIESC Journal, 2025, 76(12): 6626-6632.
刘博, 黄昊辉, 李奇蕴, 孙晨贸, 冯杰. 基于机器学习与粒子群算法的微结构辐射冷却性能优化研究[J]. 化工学报, 2025, 76(12): 6626-6632.
Add to citation manager EndNote|Ris|BibTeX
| 统计指标 | 数值 |
|---|---|
| RMSE | 0.011314 |
| MSE | 0.000128 |
| R2 | 0.99841 |
| MAE | 0.0083269 |
Table 1 Statistical indicators of prediction results of machine learning model
| 统计指标 | 数值 |
|---|---|
| RMSE | 0.011314 |
| MSE | 0.000128 |
| R2 | 0.99841 |
| MAE | 0.0083269 |
| [1] | Lee M, Kim G, Jung Y, et al. Photonic structures in radiative cooling[J]. Light: Science & Applications, 2023, 12: 134. |
| [2] | 刘冠水. 辐射制冷技术在高铁站房的节能应用研究[J]. 制冷技术, 2024, 44(6): 75-79, 86. |
| Liu G S. Study on energy-saving application of radiative cooling technology in high-speed railway station[J]. Chinese Journal of Refrigeration Technology, 2024, 44(6): 75-79, 86. | |
| [3] | 徐第开, 盛茗峰, 杨荣贵, 等.天空辐射制冷规模化应用对我国建筑的减碳作用研究[J]. 制冷学报, 2023, 44(6): 13-21, 28. |
| Xu D K, Sheng M F, Yang R G, et al. Large-scale application of radiative sky cooling in buildings for carbon emission reduction[J]. Journal of Refrigeration. 2023, 44(6): 13-21, 28. | |
| [4] | 文凯, 王程远, 王晓坡, 等. 耦合天空辐射制冷的数据中心自然冷却方案分析[J]. 工程热物理学报, 2024, 45(5): 1248-1254. |
| Wen K, Wang C Y, Wang X P, et al. Analysis of free cooling scheme coupled with radiative sky cooling in data center[J]. Journal Of Engineering Thermophysics, 2024, 45(5): 1248-1254. | |
| [5] | 曹雄金, 王艳, 王磊, 等. 相变材料与辐射制冷材料耦合技术的研究进展[J]. 化工新型材料, 2025, 53(3): 58-64. |
| Cao X J, Wang Y, Wang L, et al. Research progress on coupling technology of phase change materials and radiation cooling material[J]. New Chemical Materials, 2025, 53(3): 58-64. | |
| [6] | Lin K T, Han J H, Li K, et al. Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond[J]. Nano Energy, 2021, 80: 105517. |
| [7] | Sheng M F, Pan H D, Xu D K, et al. Characterization and performance enhancement of radiative cooling on circular surfaces[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113782. |
| [8] | Ahmed S, Li Z P, Javed M S, et al. A review on the integration of radiative cooling and solar energy harvesting[J]. Materials Today Energy, 2021, 21: 100776. |
| [9] | Yu X X, Chen C. Coupling spectral-dependent radiative cooling with building energy simulation[J]. Building and Environment, 2021, 197: 107841. |
| [10] | Zeyghami M, Goswami D Y, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 115-128. |
| [11] | Yang X F, Wang S T, Zhang D, et al. Theoretical investigation of two ideal radiative cooling materials and radiative sky water-cooling module with ideal selective radiative materials[J]. Energy and Buildings, 2024, 323: 114768. |
| [12] | Li B, Cao B Y, Song R C, et al. Low-cost and scalable sub-ambient radiative cooling porous films[J]. Journal of Photonics for Energy, 2023, 13(1): 015501. |
| [13] | Chae D, Son S, Lim H, et al. Scalable and paint-format microparticle-polymer composite enabling high-performance daytime radiative cooling[J]. Materials Today Physics, 2021, 18: 100389. |
| [14] | Bijarniya J P, Sarkar J, Maiti P. Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110263. |
| [15] | Ma H C, Yao K Q, Dou S L, et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110584. |
| [16] | Chen J, Li X, Chen Y T, et al. Temperature self-adaptive ultra-thin solar absorber based on optimization algorithm[J]. Photonics, 2023, 10(5): 546. |
| [17] | 刘立君, 李龙飞, 毛前军. 基于遗传算法优化光栅辐射特性[J]. 工程热物理学报, 2016, 37(7): 1538-1543. |
| Liu L J, Li L F, Mao Q J. Radiative property optimization of gratings based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2016, 37(7): 1538-1543. | |
| [18] | Han T, Zhou Z H, Du Y H, et al. Advances in radiative sky cooling based on the promising electrospinning[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114533. |
| [19] | 王林茜, 陈娟, 牟春晖. 基于稀疏采样的FDTD/TDPO混合优化算法[J]. 电波科学学报, 2024, 39(5): 846-851. |
| Wang L X, Chen J, Mou C H. Hybrid optimization algorithm of FDTD/TDPO based on sparse sampling[J]. Chinese Journal of Radio Science, 2024, 39(5): 846-851. | |
| [20] | Bass S F, Palmer A M, Schab K R, et al. Conversion matrix method of moments for time-varying electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6763-6774. |
| [21] | 邓祥文, 伍力源, 赵锐, 等. 机器学习在光电子能谱中的应用及展望[J]. 物理学报, 2024, 73(21): 64-84. |
| Deng X W, Wu L Y, Zhao R, et al. Application and prospect of machine learning in photo electron spectroscopy[J]. Acta Physica Sinica, 2024, 73(21): 64-84. | |
| [22] | Sun S L, Cao Z H, Zhu H, et al. A survey of optimization methods from a machine learning perspective[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3668-3681. |
| [23] | Narvaez G, Giraldo L F, Bressan M, et al. Machine learning for site-adaptation and solar radiation forecasting[J]. Renewable Energy, 2021, 167: 333-342. |
| [24] | 杜佳欣, 王富强, 张鑫平, 等. 机器学习辅助辐射特性定向调控优化设计研究与应用综述[J]. 东北电力大学学报, 2024, 44(6): 63-73. |
| Du J X, Wang F Q, Zhang X P, et al. A review on the research and application of machine learning assisted optimal design for directional regulation of radiation properties[J]. Journal of Northeast Electric Power University, 2024, 44(6): 63-73. | |
| [25] | Kim S, Shang W J, Moon S, et al. High-performance transparent radiative cooler designed by quantum computing[J]. ACS Energy Letters, 2022, 7(12): 4134-4141. |
| [26] | Pan Q H, Zhou S H, Chen S N, et al. Deep learning-based inverse design optimization of efficient multilayer thermal emitters in the near-infrared broad spectrum[J]. Optics Express, 2023, 31(15): 23944. |
| [27] | 汪丽旭, 韩玉阁. 微结构热辐射器光谱特性的影响因素研究[J]. 科学技术与工程, 2016, 16(11): 180-184. |
| Wang L X, Han Y G. Research on affecting factors of spectral characteristics of radiator with microstructure[J]. Science Technology and Engineering, 2016, 16(11): 180-184. | |
| [28] | 廖涂威, 鞠生宏, 赵长颖. 机器学习加速多层双曲材料近场热调控器设计[J]. 工程热物理学报, 2025, 46(5): 1606-1612. |
| Liao T W, Ju S H, Zhao C Y. Review of surrogate gradient methods in spiking deep learning[J]. Journal of Engineering Thermophysics, 2025, 46(5): 1606-1612. | |
| [29] | Edwards C. Neural networks learn to speed up simulations[J]. Communications of the ACM, 2022, 65(5): 27-29. |
| [30] | Rizqi Z U, Chou S Y, Yu T H. Green energy mix modeling under supply uncertainty: hybrid system dynamics and adaptive PSO approach[J]. Applied Energy, 2023, 349: 121643. |
| [31] | 邱千里, 章晋国, 周东劼, 等. 基于多目标粒子群优化算法设计的双波段窄带热辐射器[J]. 红外与毫米波学报, 2025, 44(1): 11-16. |
| Qiu Q L, Zhang J G, Zhou D J, et al. Dual-band narrowband thermal emitter designed based on multi objective particle swarm optimization algorithm[J]. Journal of Infrared Millimeter Waves, 2025, 44(1): 11-16. |
| [1] | Chunmeng ZHU, Zeng LI, Nan LIU, Yunpeng ZHAO, Xiaogang SHI, Xingying LAN. Fault detection of catalyst loss in FCC disengager based on autoencoder and multi-scale symbolic transfer entropy [J]. CIESC Journal, 2025, 76(9): 4512-4523. |
| [2] | Ze WANG, Qiong HU, Yajing CHEN, Yan WANG, Jiaxu GENG, Feiran SHEN. Leakage characteristics, sealing mechanism, and optimization design of self-impacting liquid seals [J]. CIESC Journal, 2025, 76(8): 4194-4204. |
| [3] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [4] | Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace [J]. CIESC Journal, 2025, 76(6): 2733-2742. |
| [5] | Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN [J]. CIESC Journal, 2025, 76(6): 2848-2858. |
| [6] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
| [7] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| [8] | Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions [J]. CIESC Journal, 2025, 76(4): 1545-1558. |
| [9] | Xinyu ZHENG, Zehua REN, Li ZHOU, Shiyang CHAI, Xu JI. Lattice energy regression model based on crystal graph convolutional neural networks [J]. CIESC Journal, 2025, 76(3): 1084-1092. |
| [10] | Mengyang LIU, Xuejian SUN, Wenyuan MAO, Xiwen DENG, Jilin LEI. Contact characterization of sealing rings considering microscopic surface delamination features [J]. CIESC Journal, 2025, 76(3): 1156-1169. |
| [11] | Heng ZHANG, Dianlu KUI, Hong CHANG, Zhigang ZHAN. Effect of mechanical stress on the interfacial transport properties of gas diffusion layers [J]. CIESC Journal, 2025, 76(2): 637-644. |
| [12] | Panpan WEI, Yinan LIU, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Preparation of aqueous two-phase droplets in improved T-shaped microchannel [J]. CIESC Journal, 2025, 76(2): 576-583. |
| [13] | Shengjie XIONG, Li XIE, Liang XU, Yuqing CAO, Huizhong YANG. Soft sensor development based on deep extended variational autoencoder with just-in-time learning [J]. CIESC Journal, 2025, 76(12): 6486-6496. |
| [14] | Qichao LIU, Shibo ZHANG, Yuqing LI, Yunlong ZHOU, Yiwen RAN. Prediction of void fraction in gas-liquid two-phase flow under fluctuating vibration in horizontal and vertical pipes based on WOA-CNN-GRU-ATT [J]. CIESC Journal, 2025, 76(11): 5900-5910. |
| [15] | Shuang CAO, He LIU, Jiaju GUO, Yi ZHANG, Wenpei LIU, Xuehong WU. R245fa flow boiling heat transfer characteristics in horizontal tube with segmented porous coating [J]. CIESC Journal, 2025, 76(11): 5806-5815. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||