CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6614-6625.DOI: 10.11949/0438-1157.20250503
• Energy and environmental engineering • Previous Articles Next Articles
Shengqiang YIN1(
), Xiangyu ZHONG1, Manyu GONG1, Lu LI1, Yuanzheng LIU2, Shoubin ZHOU3, Junbing XIAO1,3(
), Changhui LIU2(
), Chuankun JIA1
Received:2025-05-08
Revised:2025-06-23
Online:2026-01-23
Published:2025-12-31
Contact:
Junbing XIAO, Changhui LIU
尹胜强1(
), 钟湘宇1, 龚漫雨1, 李露1, 刘远征2, 周寿斌3, 肖俊兵1,3(
), 刘昌会2(
), 贾传坤1
通讯作者:
肖俊兵,刘昌会
作者简介:尹胜强(2004—),男,本科生,yin_sq310@163.com
基金资助:CLC Number:
Shengqiang YIN, Xiangyu ZHONG, Manyu GONG, Lu LI, Yuanzheng LIU, Shoubin ZHOU, Junbing XIAO, Changhui LIU, Chuankun JIA. Characterization of properties and thermal conductivity enhancement of activated carbonized peach gum-based composite phase change materials[J]. CIESC Journal, 2025, 76(12): 6614-6625.
尹胜强, 钟湘宇, 龚漫雨, 李露, 刘远征, 周寿斌, 肖俊兵, 刘昌会, 贾传坤. 活化桃胶碳基复合相变材料性能表征及导热增强研究[J]. 化工学报, 2025, 76(12): 6614-6625.
Add to citation manager EndNote|Ris|BibTeX
| 材料 | 密度/(g⋅cm-3) | 纯度/% | 熔化温度/℃ |
|---|---|---|---|
| 棕榈酸 | 0.85 | 98.00 | 62.50 |
| 硬脂酸 | 0.84 | 98.37 | 71.70 |
| 氢氧化钾 | 2.04 | AR | — |
Table 1 The main physical properties of used materials
| 材料 | 密度/(g⋅cm-3) | 纯度/% | 熔化温度/℃ |
|---|---|---|---|
| 棕榈酸 | 0.85 | 98.00 | 62.50 |
| 硬脂酸 | 0.84 | 98.37 | 71.70 |
| 氢氧化钾 | 2.04 | AR | — |
| CPG质量分数 | 熔化过程 | 凝固过程 | CPGK质量分数 | 熔化过程 | 凝固过程 | ||||
|---|---|---|---|---|---|---|---|---|---|
| ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ||
| 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 | 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 |
| 0.01 | [56.60,62.34] | 183.1 | [43.53,51.73] | 181.6 | 0.01 | [55.30,62.63] | 180.8 | [43.07,52.04] | 175.4 |
| 0.02 | [55.68,60.56] | 171.6 | [44.74,52.02] | 169.8 | 0.02 | [55.52,60.88] | 175.4 | [44.17,51.56] | 172.7 |
| 0.03 | [56.31,62.25] | 170.0 | [43.45,52.33] | 168.8 | 0.03 | [54.78,61.76] | 170.3 | [43.24,51.90] | 169.9 |
| 0.04 | [55.65,62.97] | 169.0 | [43.67,53.23] | 168.2 | 0.04 | [55.38,62.21] | 169.4 | [43.31,52.27] | 169.1 |
| 0.05 | [55.83,59.04] | 166.0 | [46.51,53.24] | 164.2 | 0.05 | [55.02,62.76] | 165.5 | [42.67,51.23] | 165.2 |
Table 2 The latent heat of phase change and phase change temperature of composites
| CPG质量分数 | 熔化过程 | 凝固过程 | CPGK质量分数 | 熔化过程 | 凝固过程 | ||||
|---|---|---|---|---|---|---|---|---|---|
| ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ||
| 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 | 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 |
| 0.01 | [56.60,62.34] | 183.1 | [43.53,51.73] | 181.6 | 0.01 | [55.30,62.63] | 180.8 | [43.07,52.04] | 175.4 |
| 0.02 | [55.68,60.56] | 171.6 | [44.74,52.02] | 169.8 | 0.02 | [55.52,60.88] | 175.4 | [44.17,51.56] | 172.7 |
| 0.03 | [56.31,62.25] | 170.0 | [43.45,52.33] | 168.8 | 0.03 | [54.78,61.76] | 170.3 | [43.24,51.90] | 169.9 |
| 0.04 | [55.65,62.97] | 169.0 | [43.67,53.23] | 168.2 | 0.04 | [55.38,62.21] | 169.4 | [43.31,52.27] | 169.1 |
| 0.05 | [55.83,59.04] | 166.0 | [46.51,53.24] | 164.2 | 0.05 | [55.02,62.76] | 165.5 | [42.67,51.23] | 165.2 |
| [1] | Yang S, Shao X F, Luo J H, et al. A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat[J]. Energy, 2023, 265: 126359. |
| [2] | Wang K, Li Y, Wang B L, et al. Study on the integrated battery thermal management system based on magnetic fields and nano-enhanced phase change materials coupled with electrothermal films[J]. International Journal of Heat and Mass Transfer, 2025, 240: 126665. |
| [3] | 邹瀚影, 冯妍卉, 邱琳, 等. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160, 377. |
| Zou H Y, Feng Y H, Qiu L, et al. Size effect of heat conduction mechanism on stearic acid[J]. CIESC Journal, 2019, 70(S2): 155-160, 377. | |
| [4] | Xu T, He R H, Fan G, et al. Hexadecanol-palmitic acid/expanded graphite eutectic composite phase change material and its application in photovoltaic panel[J]. Solar Energy Materials and Solar Cells, 2024, 273: 112934. |
| [5] | 朱郑洋, 李小姗, 罗聪, 等. 基于二元双峰相变储热材料的电池热管理系统及其热适应性研究[J/OL]. 洁净煤技术, 2025. . |
| Zhu Z Y, Li X S, Luo C, et al. Investigations on thermal adaptability of battery thermal management system based on binary double-peak phase change materials[J/OL]. Clean Coal Technology, 2025.. | |
| [6] | Zhang H Q, Sun Q R, Yuan Y P, et al. A novel form-stable phase change composite with excellent thermal and electrical conductivities[J]. Chemical Engineering Journal, 2018, 336: 342-351. |
| [7] | Niu J Y, Yuan W H, Zhang Z G, et al. A pourable, thermally conductive and electronic insulated phase change material for thermal management of lithium-ion battery[J]. Chemical Engineering Journal, 2024, 489: 151310. |
| [8] | Ali Bhutto Y, Pandey A K, Saidur R, et al. Hybrid silver-graphene nanoparticles enhanced Lauric acid phase change material for photovoltaic and thermoelectric generator applications: experimental and simulation analysis[J]. Journal of Energy Storage, 2024, 93: 112320. |
| [9] | Bian Z, Hou F, Bai Y, et al. Composited phase change material with hierarchical metal foam for efficient thermal energy management[J]. Applied Thermal Engineering, 2024, 236: 121745. |
| [10] | Bin Shahid U, Abdala A. A critical review of phase change material composite performance through figure-of-merit analysis: graphene vs boron nitride[J]. Energy Storage Materials, 2021, 34: 365-387. |
| [11] | Xiao J B, Zou B, Liu C H, et al. Carbonized loofah sponge fragments enhanced phase change thermal energy storage: preparation and thermophysical property analysis[J]. Applied Thermal Engineering, 2024, 242: 122505. |
| [12] | Zhang Y, Yan J J, Xie H W, et al. Preparation and performance study of porous biochar-based shape-stabilized phase change materials for thermal energy storage[J]. Biomass Conversion and Biorefinery, 2025, 15(7): 11065-11081. |
| [13] | Atinafu D G, Yun B Y, Yang S, et al. Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage[J]. Chemical Engineering Journal, 2022, 437: 135407. |
| [14] | Li C C, Xie B S, He Z X, et al. 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 140: 862-873. |
| [15] | Gao N, Du J L, Yang W B, et al. Biomass-based shape-stabilized composite phase-change materials with high solar-thermal conversion efficiency for thermal energy storage[J]. Polymers, 2023, 15(18): 3747. |
| [16] | Liu X X, Zhang Y H, Yu C Y, et al. N-doped porous carbon with directional oriented channel structure derived from biomass peach gum/poly(o-phenylenediamine) composite for high-performance supercapacitors[J]. Journal of Energy Storage, 2024, 84: 110860. |
| [17] | Lin Y, Chen Z Y, Yu C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
| [18] | Zhao D, Zhao Q, Feng L, et al. Honey-comb carbon nanostructure derived from peach gum to yield high microwave absorption[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 25829-25839. |
| [19] | Dai J S, Ma F, Fu Z, et al. Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement[J]. Renewable Energy, 2021, 175: 748-759. |
| [20] | Kumar P, Thomas S, Sobhan C B, et al. Activated carbon foam composite derived from PEG400/Terminalia Catappa as form stable PCM for sub-zero cold energy storage[J]. Journal of Cleaner Production, 2024, 434: 139993. |
| [21] | Dai Z F, Zhang G L, Xiao Y F, et al. High-directional thermally conductive stearic acid/expanded graphite-graphene films for efficient photothermal energy storage[J]. Chemical Engineering Journal, 2024, 484: 149203. |
| [22] | 肖俊兵, 钟湘宇, 任建地, 等. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| Xiao J B, Zhong X Y, Ren J D, et al. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials[J]. CIESC Journal, 2025, 76(3): 1312-1322. | |
| [23] | Yadav A, Pandey A K, Samykano M, et al. Wheat husk derived microparticle infused organic phase change material for efficient heat transfer and sustainable thermal energy storage[J]. Journal of Energy Storage, 2024, 86: 111204. |
| [24] | Wang C M, Chen K, Huang J, et al. Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives[J]. Energy, 2019, 180: 873-880. |
| [25] | Liu S X, Zhang X, Zhu X Z, et al. A low-temperature phase change material based on capric-stearic acid/expanded graphite for thermal energy storage[J]. ACS Omega, 2021, 6(28): 17988-17998. |
| [26] | Li W, Dong Y, Zhang X, et al. Preparation and performance analysis of graphite additive/paraffin composite phase change materials[J]. Processes, 2019, 7(7): 447. |
| [27] | Agrawal R, Singh K D P, Sharma R K. Experimental investigations on the phase change and thermal properties of nano enhanced binary eutectic phase change material of palmitic acid‐stearic acid/CuO nanoparticles for thermal energy storage[J]. International Journal of Energy Research, 2022, 46(5): 6562-6576. |
| [28] | Bing N C, Wu G Z, Yang J, et al. Thermally induced flexible phase change composites with enhanced thermal conductivity for solar thermal conversion and storage[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111684. |
| [29] | Bai K H, Li C C, Xie B S, et al. Emerging PEG/VO2 dual phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111686. |
| [30] | Wu X H, Wang C X, Wang Y L, et al. Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 671-677. |
| [31] | 陈莎, 陈岳浩, 孙小琴, 等. 碳基纳米石蜡复合相变储能材料制备与性能研究[J]. 储能科学与技术, 2024, 13(12): 4349-4356. |
| Chen S, Chen Y H, Sun X Q, et al. Preparation and properties of nano-carbon-based composite paraffin phase-change materials[J]. Energy Storage Science and Technology, 2024, 13(12): 4349-4356. | |
| [32] | Lu Y, Hu R P, Chen X P, et al. A strategy for constructing 3D ordered boron nitride aerogels-based thermally conductive phase change composites for battery thermal management[J]. Journal of Materials Science & Technology, 2023, 160: 248-257. |
| [33] | Wang C M, Chen K, Huang Z, et al. Effect of polymer-derived silicon carbonitride on thermal performances of polyethylene glycol based composite phase change materials[J]. Solar Energy, 2020, 208: 282-288. |
| [34] | Xiong T, Ok Y S, Dissanayake P D, et al. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles[J]. Science of the Total Environment, 2022, 827: 154341. |
| [35] | Ji W, Cheng X M, Chen S H, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. |
| [36] | Ali Bhutto Y, Pandey A K, Saidur R, et al. Analyzing the thermal potential of binary 2D(h-BN/Gr)nanoparticles enhanced lauric acid phase change material for photovoltaic thermal system application[J]. Journal of Energy Storage, 2023, 73: 109116. |
| [37] | Zhang Y A, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
| [38] | Xiao S K, Hu X W, Jiang L, et al. Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity[J]. Journal of Energy Storage, 2022, 54: 105238. |
| [1] | Bing LIAO, Xinyu ZHU, Qianqian HUANG, Wen XU, Mengyao KOU, Na GUO. Performance and mechanism of enhanced Fenton system by hydroxylamine hydrochloride for removal of 2, 4-DCP under near-neutral conditions [J]. CIESC Journal, 2025, 76(8): 4273-4283. |
| [2] | Lei WU, Zixuan HU, Yuan GAO, Changbo LIU, Husheng CAO, Tiantian LIU, Ruiyu ZHU, Jun ZHOU. Oxidation remediation of polycyclic aromatic hydrocarbons contaminated soil by microwave combined with biochar activated persulfate [J]. CIESC Journal, 2025, 76(7): 3659-3670. |
| [3] | Wenjia LIU, Ruxue DU, Siqi WANG, Tingxian LI. Research status and application of functional phase change materials for electro-thermal conversion in thermal energy storage [J]. CIESC Journal, 2025, 76(7): 3185-3196. |
| [4] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [5] | Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate [J]. CIESC Journal, 2025, 76(6): 2701-2713. |
| [6] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
| [7] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
| [8] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| [9] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
| [10] | Zhongqing CHEN, Jiaxu LIU, Yanyu WANG, Hongquan JING, Cuihong HOU, Lingbo QU. Effect of K-B-Al ternary system on the melting characteristics and glass structure of tailings [J]. CIESC Journal, 2025, 76(3): 1323-1333. |
| [11] | Xinyan CHEN, Yiling CHEN, Xinbo PENG, Jingjie HU, Xueliang JIANG, Feng YOU. Recent progress in the preparation, structure, and application of thermal insulation materials [J]. CIESC Journal, 2025, 76(12): 6179-6195. |
| [12] | Zhizhong PENG, Xuelei LANG, Qiang FANG, Huifang JING, dazhong ZHONG, Jinping LI, Qiang ZHAO. Ag-Sn interfacial electronic structure modulation for high-efficiency CO2 electroreduction at 1 A/cm2 under acidic conditions [J]. CIESC Journal, 2025, 76(12): 6376-6386. |
| [13] | Tian YANG, Huixia GUO, Mengci SUN. The CoFe2O4/CeO2 composite material activates PMS to degrade tetracycline hydrochloride [J]. CIESC Journal, 2025, 76(12): 6680-6695. |
| [14] | Yuchen WANG, Wanzong WANG, Xin ZHANG, Maoqiang GUO, Xiaoming ZHOU, Lizhi SHENG. Electrochemical performance of high-mass-loading porous carbons derived from catalpa pod shells [J]. CIESC Journal, 2025, 76(12): 6748-6760. |
| [15] | Jiaqi QIU, Zhongqing YANG, Zhigang ZHANG, Hailong GAN, Chunxiu HUO, Zhishuai DOU, Jingyu RAN. Mechanistic study of Mn/Ce co-doping for enhanced oxygen species conversion and catalytic combustion of dilute methane [J]. CIESC Journal, 2025, 76(11): 5604-5616. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||