CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 812-824.DOI: 10.11949/0438-1157.20240977
• Energy and environmental engineering • Previous Articles
Shunnian XU1(), Xiao FENG1, Dejun SHI2, Zhiguo SUN2, Chenwei ZHANG1, Gang WANG1(
), Jinsen GAO1, Chunming XU1
Received:
2024-08-30
Revised:
2024-10-09
Online:
2025-03-10
Published:
2025-03-25
Contact:
Gang WANG
许顺年1(), 冯晓1, 史得军2, 孙志国2, 张宸玮1, 王刚1(
), 高金森1, 徐春明1
通讯作者:
王刚
作者简介:
许顺年(1995—),男,博士研究生,shunnianxu@163.com
基金资助:
CLC Number:
Shunnian XU, Xiao FENG, Dejun SHI, Zhiguo SUN, Chenwei ZHANG, Gang WANG, Jinsen GAO, Chunming XU. Research on direct hydro-upgrading of crude oils and the dissociation of asphaltene supramolecules[J]. CIESC Journal, 2025, 76(2): 812-824.
许顺年, 冯晓, 史得军, 孙志国, 张宸玮, 王刚, 高金森, 徐春明. 原油直接加氢改质及其沥青质超分子解缔反应的研究[J]. 化工学报, 2025, 76(2): 812-824.
指标 | BC | BH |
---|---|---|
ρ20 /(kg·m-3) | 881.5 | 921.8 |
残炭/%(质量) | 7.92 | 13.75 |
元素组成/%(质量) | ||
C | 84.05 | 84.56 |
H | 12.53 | 11.34 |
S | 3.19 | 3.72 |
N | 0.23 | 0.38 |
金属含量/(μg·g-1) | 66.5 | 92.5 |
胶质/%(质量) | 7.81 | 21.72 |
沥青质/%(质量) | 2.85 | 4.63 |
馏分段收率/%(质量) | ||
IBP~180℃ | 10.2 | — |
180~350℃ | 24.5 | 2.2 |
350~500℃ | 20.0 | 31.2 |
>500℃ | 45.3 | 66.6 |
Table 1 The properties of feedstocks
指标 | BC | BH |
---|---|---|
ρ20 /(kg·m-3) | 881.5 | 921.8 |
残炭/%(质量) | 7.92 | 13.75 |
元素组成/%(质量) | ||
C | 84.05 | 84.56 |
H | 12.53 | 11.34 |
S | 3.19 | 3.72 |
N | 0.23 | 0.38 |
金属含量/(μg·g-1) | 66.5 | 92.5 |
胶质/%(质量) | 7.81 | 21.72 |
沥青质/%(质量) | 2.85 | 4.63 |
馏分段收率/%(质量) | ||
IBP~180℃ | 10.2 | — |
180~350℃ | 24.5 | 2.2 |
350~500℃ | 20.0 | 31.2 |
>500℃ | 45.3 | 66.6 |
指标 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|
ρ20 /(kg·m-3) | 884.9 | 866.4 | 868.2 |
残炭/%(质量) | 5.48 | 3.55 | 3.79 |
元素组成/%(质量) | |||
C | 86.44 | 86.33 | 86.49 |
H | 12.38 | 13.40 | 13.18 |
S | 0.93 | 0.20 | 0.30 |
N | 0.25 | 0.07 | 0.03 |
金属含量/(μg·g-1) | 18.1 | 19.3 | 17.3 |
胶质/%(质量) | 17.63 | 5.71 | 6.09 |
沥青质/%(质量) | 2.70 | 0.27 | 0.41 |
Table 2 The properties of hydrogenation oils
指标 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|
ρ20 /(kg·m-3) | 884.9 | 866.4 | 868.2 |
残炭/%(质量) | 5.48 | 3.55 | 3.79 |
元素组成/%(质量) | |||
C | 86.44 | 86.33 | 86.49 |
H | 12.38 | 13.40 | 13.18 |
S | 0.93 | 0.20 | 0.30 |
N | 0.25 | 0.07 | 0.03 |
金属含量/(μg·g-1) | 18.1 | 19.3 | 17.3 |
胶质/%(质量) | 17.63 | 5.71 | 6.09 |
沥青质/%(质量) | 2.70 | 0.27 | 0.41 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
RA | 61.8 | 55.4 | 46.6 | 49.0 |
RN | 13.5 | 12.4 | 13.8 | 14.7 |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
Table 3 Structural parameters of the amorphous nanoaggregates
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
RA | 61.8 | 55.4 | 46.6 | 49.0 |
RN | 13.5 | 12.4 | 13.8 | 14.7 |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fAXRD | 0.20 | 0.23 | 0.27 | 0.23 |
dm/nm | 0.36 | 0.36 | 0.35 | 0.36 |
dγ/nm | 0.57 | 0.56 | 0.56 | 0.56 |
La/nm | 2.38 | 1.73 | 1.67 | 1.72 |
Lc/nm | 1.75 | 1.67 | 1.60 | 1.64 |
N | 5.97 | 5.73 | 5.47 | 5.61 |
Nar | 8.91 | 6.48 | 6.26 | 6.45 |
Table 4 Structural parameters of the amorphous nanoaggregates
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fAXRD | 0.20 | 0.23 | 0.27 | 0.23 |
dm/nm | 0.36 | 0.36 | 0.35 | 0.36 |
dγ/nm | 0.57 | 0.56 | 0.56 | 0.56 |
La/nm | 2.38 | 1.73 | 1.67 | 1.72 |
Lc/nm | 1.75 | 1.67 | 1.60 | 1.64 |
N | 5.97 | 5.73 | 5.47 | 5.61 |
Nar | 8.91 | 6.48 | 6.26 | 6.45 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
n | 5.3 | 4.4 | 2.4 | 2.7 |
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
11.6 | 12.6 | 19.8 | 18.3 | |
2.5 | 2.8 | 5.9 | 5.5 | |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
Table 5 Structural parameters of the molecular units
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
n | 5.3 | 4.4 | 2.4 | 2.7 |
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
11.6 | 12.6 | 19.8 | 18.3 | |
2.5 | 2.8 | 5.9 | 5.5 | |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
1 | 李明丰, 吴昊, 沈宇, 等. “双碳”背景下炼化企业高质量发展路径探讨[J]. 石油学报(石油加工), 2022, 38(3): 493-499. |
Li M F, Wu H, Shen Y, et al. High-quality development path for refining and chemical enterprises under the dual carbon background[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 493-499. | |
2 | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
Zhou H J, Zhou Y, Xu C M. Exploration of refining and chemical integration under China's dualcarbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. | |
3 | 王刚, 孙静, 方东, 等. 分子炼油为导向的催化裂化加工重质油策略[J]. 中国科学: 化学, 2018, 48(4): 362-368. |
Wang G, Sun J, Fang D, et al. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Scientia Sinica (Chimica), 2018, 48(4): 362-368. | |
4 | 王威, 李明丰, 王琪, 等. 馏分炼油向组分炼油转变实现炼油向化工高效转型[J]. 石油炼制与化工, 2024, 55(6): 1-8. |
Wang W, Li M F, Wang Q, et al. Component-based refining accelerating the transition of oil refining to chemicals production[J]. Petroleum Processing and Petrochemicals, 2024, 55(6): 1-8. | |
5 | 聂红, 杨清河, 戴立顺, 等. 重油高效转化关键技术的开发及应用[J]. 石油炼制与化工, 2012, 43(1): 1-6. |
Nie H, Yang Q H, Dai L S, et al. Development and commercial application of key technology for efficient conversion of heavy oil[J]. Petroleum Processing and Petrochemicals, 2012, 43(1): 1-6. | |
6 | 何盛宝. 新形势下我国化工行业的创新与发展[J]. 化工进展, 2021, 40(1): 1-5. |
He S B. Innovation and development of China's chemical industry against new situation[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 1-5. | |
7 | 李大东. 我国炼油工业转型发展的技术策略[J]. 石油炼制与化工, 2024, 55(1): 7-17. |
Li D D. Technical strategies for transformation and development of China petroleum processing industry[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 7-17. | |
8 | 张庆军, 刘文洁, 王鑫, 等. 国外渣油加氢技术研究进展[J]. 化工进展, 2015, 34(8): 2988-3002. |
Zhang Q J, Liu W J, Wang X, et al. Research progress in hydroprocessing technology for imported residuum[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2988-3002. | |
9 | 刘勇军, 付庆涛, 刘晨光. 渣油加氢脱金属反应机理的研究进展[J]. 化工进展, 2009, 28(9): 1546-1552. |
Liu Y J, Fu Q T, Liu C G. Advances in reaction mechanism of residua hydrodemetallization[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1546-1552. | |
10 | 张宸玮, 方东, 金翔, 等. 不同基属重油加氢改质与沥青质超分子缔合体解构[J]. 石油学报(石油加工), 2024, 40(5): 1364-1372. |
Zhang C W, Fang D, Jin X, et al. Hydrogenation of different base heavy oils and deconstruction of asphaltene supramolecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(5): 1364-1372. | |
11 | 刘爽, 张霖宙, 许志明, 等. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
Liu S, Zhang L Z, Xu Z M, et al. Study on molecular level composition correlation of viscosity of residual oil and its components[J]. CIESC Journal, 2023, 74(8): 3226-3241. | |
12 | 周惠敏, 田莹, 刘思亿, 等. 沥青质分子缔合作用机制、表征、理论计算与应用研究进展[J]. 化工学报, 2023, 74(10): 3995-4019. |
Zhou H M, Tian Y, Liu S Y, et al. Advances in molecular mechanisms, characterization, theoretical calculation and applications on asphaltenes aggregation[J]. CIESC Journal, 2023, 74(10): 3995-4019. | |
13 | 徐芳, 卞贺, 韦胜超, 等. 石油沥青质超分子聚集及解聚研究进展[J]. 石油学报(石油加工), 2022, 38(4): 958-969. |
Xu F, Bian H, Wei S C, et al. Research progress on supramolecular aggregation of petroleum asphaltenes and their disaggregation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(4): 958-969. | |
14 | Nguyen M T, Le Tri Nguyen D, Xia C L, et al. Recent advances in asphaltene transformation in heavy oil hydroprocessing: progress, challenges, and future perspectives[J]. Fuel Processing Technology, 2021, 213: 106681. |
15 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 1): Asphaltenes are composed of abundant island and archipelago structural motifs[J]. Energy & Fuels, 2017, 31(12): 13509-13518. |
16 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 2): Selective separation method that reveals fractions enriched in island and archipelago structural motifs by mass spectrometry[J]. Energy & Fuels, 2018, 32(1): 314-328. |
17 | 刘涛, 金喆, 于福帅, 等. 中低温煤焦油在不同氢初压下重质组分组成结构的变化规律[J]. 高校化学工程学报, 2024, 38(4): 586-597. |
Liu T, Jin Z, Yu F S, et al. The variation of composition and structure of heavy components of medium and low temperature coal tar under different initial hydrogen pressures[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(4): 586-597. | |
18 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 28-52. |
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 28-52. | |
19 | Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33: 1587-1594. |
20 | Dickie J P, Yen T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. |
21 | Mullins O C. The asphaltenes[J]. Annual Review of Analytical Chemistry, 2011, 4: 393-418. |
22 | Mullins O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
23 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 3): Dominance of island or archipelago structural motif is sample dependent[J]. Energy & Fuels, 2018, 32(9): 9106-9120. |
24 | Schuler B, Zhang Y L, Liu F, et al. Overview of asphaltene nanostructures and thermodynamic applications[J]. Energy & Fuels, 2020, 34(12): 15082-15105. |
25 | Gray M R, Tykwinski R R, Stryker J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
26 | 盛强, 王刚, 金楠, 等. 石油沥青质的微观结构分析和轻质化[J]. 化工进展, 2019, 38(3): 1147-1159. |
Sheng Q, Wang G, Jin N, et al. Petroleum asphaltene micro-structure analysis and lightening[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1147-1159. | |
27 | Jin N, Wang G, Han S, et al. Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy & Fuels, 2016, 30(4): 2594-2603. |
28 | 宋江峰. 原油中沥青质的稳定性及其影响因素[J]. 油田化学, 2023, 40(4): 627-635. |
Song J F. Stability and influencing factors of asphaltene in crude oil[J]. Oilfield Chemistry, 2023, 40(4): 627-635. | |
29 | Wang S Q, Liu J J, Zhang L Y, et al. Interaction forces between asphaltene surfaces in organic solvents[J]. Langmuir, 2010, 26(1): 183-190. |
30 | 许友好, 汪燮卿, 舒兴田. 原油最大化生产化工原料的技术思考及相关技术开发[J]. 石油炼制与化工, 2019, 50(11): 1-10. |
Xu Y H, Wang X Q, Shu X T. Technical consideration and relevant technological development on maximizing chemicals from crude oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(11): 1-10. | |
31 | 刘美佳, 王刚, 张忠东, 等. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
Liu M J, Wang G, Zhang Z D, et al. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. | |
32 | 王红秋. 我国炼油向化工转型现状与思考[J]. 化工进展, 2020, 39(11): 4401-4407. |
Wang H Q. Status and thinking of refining to chemical transformation in China[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4401-4407. | |
33 | 吴青. 原油(重油)制化学品的技术及其进展(Ⅰ): 原油蒸汽裂解技术[J]. 炼油技术与工程, 2022, 52(4): 1-10. |
Wu Q. Technology and progress in crude oil to chemicals(part 1): Crude oil steam cracking technology[J]. Petroleum Refinery Engineering, 2022, 52(4): 1-10. | |
34 | 孙克宁, 侯瑞君, 张春刚. 一种含硫/高硫原油预加氢脱硫工艺: 107057755A[P]. 2017-08-18. |
Sun K N, Hou R J, Zhang C G. A pre-hydrodesulfurization process for sulfur or high sulfur crude oil: 107057755A[P]. 2017-08-18. | |
35 | Guinier A, Fournet G, Walker C B, et al. Small-angle scattering of X-rays[J]. Physics Today, 1956, 9(8): 38-39. |
36 | 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000: 68-80. |
Liang W J. Heavy Oil Chemistry[M]. Dongying: China University of Petroleum Press, 2000: 68-80. | |
37 | AlHumaidan F S, Hauser A, Rana M S, et al. Changes in asphaltene structure during thermal cracking of residual oils: XRD study[J]. Fuel, 2015, 150: 558-564. |
38 | Prins R, Egorova M, Röthlisberger A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2006, 111(1/2): 84-93. |
39 | Tanaka R, Hunt J E, Winans R E, et al. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering[J]. Energy & Fuels, 2003, 17(1): 127-134. |
40 | Ashoori S, Sharifi M, Masoumi M, et al. The relationship between SARA fractions and crude oil stability[J]. Egyptian Journal of Petroleum, 2017, 26(1): 209-213. |
41 | Santos Silva H, Alfarra A, Vallverdu G, et al. Asphaltene aggregation studied by molecular dynamics simulations: role of the molecular architecture and solvents on the supramolecular or colloidal behavior[J]. Petroleum Science, 2019, 16(3): 669-684. |
[1] | Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane [J]. CIESC Journal, 2025, 76(2): 454-465. |
[2] | Yifei LI, Yanfei SU, Tian YIN, Haoqiang JIANG, Zhiming XU, Linzhou ZHANG, Quan SHI, Chunming XU. Molecular composition and structure characterization of coal liquefaction product oil based on GC×GC-TOF MS [J]. CIESC Journal, 2025, 76(2): 543-553. |
[3] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[4] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
[5] | Shaoji WANG, Kuangrong HAO, Lei CHEN. Research on temperature forecasting of polyester fiber esterification process based on federated learning [J]. CIESC Journal, 2025, 76(1): 283-295. |
[6] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[7] | Liping ZHANG, Xiaorong MENG, Jinfeng SONG, Jinjing DU. Preparation of VO2@KH550/570@PS composite film and its thermally induced phase change properties [J]. CIESC Journal, 2024, 75(9): 3348-3359. |
[8] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[9] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
[10] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[11] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[12] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[13] | Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor [J]. CIESC Journal, 2024, 75(4): 1302-1316. |
[14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[15] | Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization [J]. CIESC Journal, 2024, 75(4): 1118-1136. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 49
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||