CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 543-553.DOI: 10.11949/0438-1157.20241047
• Thermodynamics • Previous Articles
Yifei LI1(), Yanfei SU1, Tian YIN2, Haoqiang JIANG3, Zhiming XU1, Linzhou ZHANG1(
), Quan SHI1(
), Chunming XU1
Received:
2024-09-19
Revised:
2024-10-16
Online:
2025-03-10
Published:
2025-03-25
Contact:
Linzhou ZHANG, Quan SHI
李奕菲1(), 苏沿霏1, 尹甜2, 姜浩强3, 许志明1, 张霖宙1(
), 史权1(
), 徐春明1
通讯作者:
张霖宙,史权
作者简介:
李奕菲(1995—),女,博士研究生,Liyifei_CUP@126.com
基金资助:
CLC Number:
Yifei LI, Yanfei SU, Tian YIN, Haoqiang JIANG, Zhiming XU, Linzhou ZHANG, Quan SHI, Chunming XU. Molecular composition and structure characterization of coal liquefaction product oil based on GC×GC-TOF MS[J]. CIESC Journal, 2025, 76(2): 543-553.
李奕菲, 苏沿霏, 尹甜, 姜浩强, 许志明, 张霖宙, 史权, 徐春明. 基于GC×GC-TOF MS的煤液化产物油分子组成结构表征[J]. 化工学报, 2025, 76(2): 543-553.
项目 | GC×GC实验条件 |
---|---|
色谱柱1 | HP-PONA 50 m×0.2 mm×0.5 µm |
色谱柱2 | BPX-50 2.5 m×0.1 mm×0.1 µm |
柱流量 | 恒流0.6 ml/min |
进样量和分流比 | 0.05 µl,100∶1 |
柱箱 | 40℃(5 min)-1.5℃/min-150/280/310℃(10 min) |
进样口温度 | 250℃/300℃ |
调制器周期 | 石脑油6 s,柴油8 s,改质料16 s,液化油和供氢溶剂18 s |
Table 1 GC×GC experimental conditions
项目 | GC×GC实验条件 |
---|---|
色谱柱1 | HP-PONA 50 m×0.2 mm×0.5 µm |
色谱柱2 | BPX-50 2.5 m×0.1 mm×0.1 µm |
柱流量 | 恒流0.6 ml/min |
进样量和分流比 | 0.05 µl,100∶1 |
柱箱 | 40℃(5 min)-1.5℃/min-150/280/310℃(10 min) |
进样口温度 | 250℃/300℃ |
调制器周期 | 石脑油6 s,柴油8 s,改质料16 s,液化油和供氢溶剂18 s |
Fig.5 GC×GC-TOF MS spectra of (a) coal liquefaction oil and (b) hydrogen donor solvent pyrene and its hydrogenated compounds, (c) GC×GC-FID content histogram
编号 | 名称 | 分子式 | 分子量 | 分子结构 | 1D (min) / 2D (s) | 含量 |
---|---|---|---|---|---|---|
1 | 正十五烷 | C15H32 | 212.3 | ![]() | 105.2/2.2 | 27.1 |
2 | 甲基环己烷 | C7H14 | 98.1 | ![]() | 26.6/2.2 | 16.6 |
3 | 十氢化萘 | C10H18 | 138.1 | ![]() | 64.1/2.8 | 7.8 |
4 | 十二氢非那烯 | C13H22 | 178.2 | ![]() | 93.8/3.5 | 14.0 |
5 | 16H-芘 | C16H26 | 218.2 | ![]() | 119.9/4.4 | 112.6 |
6 | 乙苯 | C8H10 | 106.1 | ![]() | 41.6/3.5 | 6.1 |
7 | 1-甲基茚满 | C10H12 | 132.1 | ![]() | 65.9/4.0 | 11.3 |
8 | 1,2,2a,3,4,5-六氢苊烯 | C12H14 | 158.1 | ![]() | 94.1/5.3 | 20.0 |
9 | 萘 | C10H8 | 128.1 | ![]() | 75.5/5.9 | 20.6 |
10 | 3-(1,1-二甲基乙基)-1,2-二氢萘 | C14H18 | 186.1 | ![]() | 112.1/5.6 | 70.7 |
11 | 4,4′-二甲基联苯 | C10H18 | 182.1 | ![]() | 120.2/7.3 | 39.4 |
12 | 芴 | C13H10 | 166.1 | ![]() | 110.9/7.3 | 23.4 |
13 | 9,10-二氢蒽 | C14H12 | 180.1 | ![]() | 119.0/7.9 | 9.4 |
14 | 1,2,3,4-四氢蒽 | C14H14 | 182.1 | ![]() | 123.2/7.9 | 18.7 |
15 | 2-甲基蒽 | C15H12 | 192.1 | ![]() | 133.1/9.1 | 24.8 |
16 | 芘 | C16H10 | 202.1 | ![]() | 147.2/11.7 | 276.5 |
17 | 4,5-二氢芘 | C16H12 | 204.1 | ![]() | 143.3/11.0 | 30.5 |
18 | 4,5,9,10-四氢芘 | C16H14 | 206.1 | ![]() | 137.3/9.8 | 5.9 |
19 | 1,2,3,6,7,8-六氢芘 | C16H16 | 208.1 | ![]() | 141.5/9.9 | 13.5 |
20 | 4-甲基䓛 | C19H14 | 242.1 | ![]() | 173.9/14.9 | 13.1 |
21 | 苯酚 | C6H6O | 94.0 | ![]() | 52.4/5.6 | 5.4 |
22 | 5-茚醇 | C9H10O | 134.1 | ![]() | 89.0/6.8 | 2.6 |
Table A1 Representative molecular information of coal liquefaction oil
编号 | 名称 | 分子式 | 分子量 | 分子结构 | 1D (min) / 2D (s) | 含量 |
---|---|---|---|---|---|---|
1 | 正十五烷 | C15H32 | 212.3 | ![]() | 105.2/2.2 | 27.1 |
2 | 甲基环己烷 | C7H14 | 98.1 | ![]() | 26.6/2.2 | 16.6 |
3 | 十氢化萘 | C10H18 | 138.1 | ![]() | 64.1/2.8 | 7.8 |
4 | 十二氢非那烯 | C13H22 | 178.2 | ![]() | 93.8/3.5 | 14.0 |
5 | 16H-芘 | C16H26 | 218.2 | ![]() | 119.9/4.4 | 112.6 |
6 | 乙苯 | C8H10 | 106.1 | ![]() | 41.6/3.5 | 6.1 |
7 | 1-甲基茚满 | C10H12 | 132.1 | ![]() | 65.9/4.0 | 11.3 |
8 | 1,2,2a,3,4,5-六氢苊烯 | C12H14 | 158.1 | ![]() | 94.1/5.3 | 20.0 |
9 | 萘 | C10H8 | 128.1 | ![]() | 75.5/5.9 | 20.6 |
10 | 3-(1,1-二甲基乙基)-1,2-二氢萘 | C14H18 | 186.1 | ![]() | 112.1/5.6 | 70.7 |
11 | 4,4′-二甲基联苯 | C10H18 | 182.1 | ![]() | 120.2/7.3 | 39.4 |
12 | 芴 | C13H10 | 166.1 | ![]() | 110.9/7.3 | 23.4 |
13 | 9,10-二氢蒽 | C14H12 | 180.1 | ![]() | 119.0/7.9 | 9.4 |
14 | 1,2,3,4-四氢蒽 | C14H14 | 182.1 | ![]() | 123.2/7.9 | 18.7 |
15 | 2-甲基蒽 | C15H12 | 192.1 | ![]() | 133.1/9.1 | 24.8 |
16 | 芘 | C16H10 | 202.1 | ![]() | 147.2/11.7 | 276.5 |
17 | 4,5-二氢芘 | C16H12 | 204.1 | ![]() | 143.3/11.0 | 30.5 |
18 | 4,5,9,10-四氢芘 | C16H14 | 206.1 | ![]() | 137.3/9.8 | 5.9 |
19 | 1,2,3,6,7,8-六氢芘 | C16H16 | 208.1 | ![]() | 141.5/9.9 | 13.5 |
20 | 4-甲基䓛 | C19H14 | 242.1 | ![]() | 173.9/14.9 | 13.1 |
21 | 苯酚 | C6H6O | 94.0 | ![]() | 52.4/5.6 | 5.4 |
22 | 5-茚醇 | C9H10O | 134.1 | ![]() | 89.0/6.8 | 2.6 |
1 | Zhao L T, Liu Z T, Cheng L. How will China's coal industry develop in the future? A quantitative analysis with policy implications[J]. Energy, 2021, 235: 121406. |
2 | 李然, 田磊, 石洪宇, 等. 全球石油消费超疫情前水平 我国成品油市场格局加速演变——2023年国内外石油市场发展形势及2024年展望[J]. 中国能源, 2024, 46(S1): 30-42. |
Li R, Tian L, Shi H Y, et al. Global oil consumption exceeds pre pandemic levels, and the pattern of China's oil market is accelerating its evolution—the situation and outlook of domestic and global oil markets in 2023[J]. Energy of China, 2024, 46(S1): 30-42. | |
3 | 孙宝东, 滕霄云, 张帆, 等. 2024年中国能源供需形势研判[J]. 中国煤炭, 2024, 50(4): 20-26. |
Sun B D, Teng X Y, Zhang F, et al. Research on China's energy supply and demand situation in 2024[J]. China Coal, 2024, 50(4): 20-26. | |
4 | 李泽根. 煤制油液化化工工艺研究[J]. 山西化工, 2023, 43(3): 85-86, 94. |
Li Z G. Study on chemical technology of coal to liquid liquefaction[J]. Shanxi Chemical Industry, 2023, 43(3): 85-86, 94. | |
5 | 郭云飞. 煤制油现状及高质量发展途径研究: 煤直接液化技术高质量发展研究[J]. 内蒙古石油化工, 2021, 47(9): 4-8. |
Guo Y F. Status of coal to oil and its research on high quality development approach—study on high quality development of direct coal liquefaction technology[J]. Inner Mongolia Petrochemical Industry, 2021, 47(9): 4-8. | |
6 | Xu J, Yang Y, Li Y W. Recent development in converting coal to clean fuels in China[J]. Fuel, 2015, 152: 122-130. |
7 | Zhang D H, Wang J Q, Lin Y G, et al. Present situation and future prospect of renewable energy in China[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 865-871. |
8 | 王洪学, 舒歌平, 杨葛灵, 等. 神华煤直接液化工艺供氢溶剂研究[J]. 应用化工, 2019, 48(10): 2462-2464, 2469. |
Wang H X, Shu G P, Yang G L, et al. Research on hydrogen-donor solvent for Shenhua direct coal liquefaction[J]. Applied Chemical Industry, 2019, 48(10): 2462-2464, 2469. | |
9 | 王建立, 康开通, 高山松, 等. 煤直接液化循环溶剂供氢性影响因素研究[J]. 中国煤炭, 2020, 46(5): 68-73. |
Wang J L, Kang K T, Gao S S, et al. Study on influencing factors of hydrogen supply of circulating solvent in direct coal liquefaction[J]. China Coal, 2020, 46(5): 68-73. | |
10 | Begon V. Structural effects of sample ageing in hydrocracked coal liquefaction extracts[J]. Fuel, 2000, 79(12): 1423-1429. |
11 | Lamey S C, Hesbach P A, White K D. Liquid fuel analyses using high-performance liquid chromatography and gas chromatography-mass spectroscopy[J]. Energy & Fuels, 1991, 5(1): 222-226. |
12 | 沈峰, 劳敏. GC-MS定性定量分析煤液化油的加氢产物[J]. 石化技术, 2022, 29(1): 13-14. |
Shen F, Lao M. Qualitative and quantitative analysis of hydrogenation products of coal liquefied oil by GC-MS[J]. Petrochemical Industry Technology, 2022, 29(1): 13-14. | |
13 | Padlo D M, Subramanian R B, Kugler E L. Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography[J]. Fuel Processing Technology, 1996, 49(1/2/3): 247-258. |
14 | McKinney D E, Clifford D J, Hou L, et al. High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with diode array detection[J]. Energy & Fuels, 1995, 9(1): 90-96. |
15 | 蔺华林, 张德祥, 彭俊, 等. 神华煤直接液化循环油的分析表征[J]. 燃料化学学报, 2007, 35(1): 104-108. |
Lin H L, Zhang D X, Peng J, et al. Analysis and characterization of recycled oil from direct liquefaction of Shenhua coal[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 104-108. | |
16 | 王薇, 舒歌平, 章序文, 等. 煤直接液化过程中供氢溶剂的组成分析[J]. 煤炭转化, 2018, 4: 48-55. |
Wang W, Shu G P, Zhang X W, et al. Composition of hydrogen donor solvent in the coal direct liquefaction process[J]. Coal Conversion, 2018, 4: 48-55. | |
17 | 王永刚, 周建明, 王彩红, 等. 先锋煤和神华煤直接液化油的组成[J]. 煤炭学报, 2006, 31(1): 81-84. |
Wang Y G, Zhou J M, Wang C H, et al. Direct liquefaction oil products distribution of Xianfeng and Shenhua coals[J]. Journal of China Coal Society, 2006, 31(1): 81-84. | |
18 | 杨小龙, 刘新颖, 陈林江. GC/MS测定煤直接液化油品烃类组成和多环芳烃含量[J]. 内蒙古石油化工, 2023, 49(6): 21-24, 51. |
Yang X L, Liu X Y, Chen L J. Determination of hydrocarbon composition and polycyclic aromatic hydrocarbon content in direct coal liquefaction oil products with GC/MS[J]. Inner Mongolia Petrochemical Industry, 2023, 49(6): 21-24, 51. | |
19 | 李群花, 姜元博, 杜一平, 等. 中心切割二维GC-MS法测定煤直接液化加氢改质油组成[J]. 分析测试学报, 2013, 32(5): 527-534. |
Li Q H, Jiang Y B, Du Y P, et al. Composition determination of coal direct liquefaction hydrotreated oil by heart-cutting two-dimensional GC-MS[J]. Journal of Instrumental Analysis, 2013, 32(5): 527-534. | |
20 | 李群花, 姜元博, 胡慧廉, 等. 气相色谱-质谱结合活数据库法测定煤直接液化加氢改质油中C7~C9馏分的组成[J]. 理化检验-化学分册, 2014, 50(9): 1086-1091. |
Li Q H, Jiang Y B, Hu H L, et al. Determination of components in fraction of C7—C9 of the coal-liquefied and hydrogenated oil by GC-MS in combination with the method of live database[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2014, 50(9): 1086-1091. | |
21 | Wang J L, Xie L Y, Peng Y F, et al. Molecular composition of direct coal liquefaction products obtained from the Shenhua industrial plant[J]. Fuel, 2024, 357: 129735. |
22 | Hoque M S, Johnson T, de la Mata P, et al. Analysis of hydrothermal aging water of fire-protective fabrics using GC × GC-TOFMS and FID[J]. Fibers and Polymers, 2024, 25(5): 1925-1948. |
23 | 孙鑫源, 李长秀. 全二维气相色谱技术在石油馏分组成分析中的应用研究进展[J].石油化工, 2023, 52(7): 1019-1027. |
Sun X Y, Li C X. Research advances in application of comprehensive two-dimensional gas chromatography technology in composition analysis of petroleum fractions[J]. Petrochemical Technology, 2023, 52(7): 1019-1027. | |
24 | Hamilton J F, Lewis A C, Millan M, et al. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process[J]. Energy & Fuels, 2007, 21(1): 286-294. |
25 | Omais B, Courtiade M, Charon N G, et al. Characterization of oxygenated species in coal liquefaction products: an overview[J]. Energy & Fuels, 2010, 24(11): 5807-5816. |
26 | Omais B, Courtiade M, Charon N G, et al. Investigating comprehensive two-dimensional gas chromatography conditions to optimize the separation of oxygenated compounds in a direct coal liquefaction middle distillate[J]. Journal of Chromatography A, 2011, 1218(21): 3233-3240. |
27 | Omais B, Courtiade M, Charon N, et al. Using gas chromatography to characterize a direct coal liquefaction naphtha[J]. Journal of Chromatography A, 2012, 1226: 61-70. |
28 | Stihle J, Uzio D, Lorentz C, et al. Detailed characterization of coal-derived liquids from direct coal liquefaction on supported catalysts[J]. Fuel, 2012, 95: 79-87. |
29 | 高山松, 李群花, 舒歌平, 等. 煤直接液化循环溶剂中饱和烃的分子组成及分布特点[J]. 煤炭转化, 2020, 43(2): 17-25. |
Gao S S, Li Q H, Shu G P, et al. Molecular composition and distribution characteristics of saturated hydrocarbons in direct coal liquefaction circulating solvent[J]. Coal Conversion, 2020, 43(2): 17-25. | |
30 | 牛鲁娜, 刘泽龙, 周建, 等. 全二维气相色谱-飞行时间质谱分析焦化柴油中饱和烃的分子组成[J]. 色谱, 2014, 32(11): 1236-1241. |
Niu L N, Liu Z L, Zhou J, et al. Molecular composition of saturated hydrocarbons in diesels by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(11): 1236-1241. | |
31 | 牛鲁娜, 刘泽龙, 周建, 等. 全二维气相色谱-飞行时间质谱鉴定柴油馏分中烯烃化合物[J]. 石油学报(石油加工), 2014, 30(5): 851-860. |
Niu L N, Liu Z L, Zhou J, et al. Identification and characterization of olefins in diesel by using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(5): 851-860. | |
32 | 孙鑫源, 李长秀, 钱钦, 等. 全二维气相色谱测定汽油馏分中芳烃详细组成[J]. 石油学报(石油加工), 2024, 40(4): 1085-1097. |
Sun X Y, Li C X, Qian Q, et al. Determination of individual aromatic components in gasoline fraction by comprehensive two-dimensional gas chromatography[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(4): 1085-1097. | |
33 | 李小强, 刘永, 秦光书. 神华煤直接液化示范项目的进展及发展方向[J]. 煤化工, 2015, 43(4): 12-15, 37. |
Li X Q, Liu Y, Qin G S. Progress and development direction of Shenhua coal direct liquefaction demonstration project[J]. Coal Chemical Industry, 2015, 43(4): 12-15, 37. | |
34 | 贾振斌, 刘永. 煤直接液化产品的组成、特性及应用[J]. 中国煤炭, 2020, 46(5): 81-86. |
Jia Z B, Liu Y. Composition, characteristics and application of direct coal liquefaction products[J]. China Coal, 2020, 46(5): 81-86. |
[1] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[2] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
[3] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[4] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[5] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[6] | Lin ZHOU, Bin YE, Xinyi SUN, Lingxin KONG, Yan XU, Yujun ZHAO. Study on the catalytic hydrogenation of maleic anhydride by mesoporous carbon-supported Ni catalyst [J]. CIESC Journal, 2024, 75(11): 4264-4273. |
[7] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
[8] | Yue PAN, Xiangyang LIU, Yichen HUANG, Jiangtao LI, Li QIU, Ruifeng LI, Sha LI, Xiaoliang YAN. Influence of distance between Ni/Al2O3 and ZnO for deep hydrogenation of sulfur-containing phenanthrene [J]. CIESC Journal, 2024, 75(10): 3548-3556. |
[9] | Hongyu LI, Xiangkun LIU, Yao SHI, Yueqiang CAO, Gang QIAN, Xuezhi DUAN. Numerical simulation of particle-resolved fixed-bed reactor for selective acetylene hydrogenation process [J]. CIESC Journal, 2024, 75(10): 3610-3622. |
[10] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
[15] | Shengliang ZHONG, Jun ZHANG, Rui SHAN, Yong SUN. Waste sponge derived carbon-based solid acids for levoglucosanone production via cassava residue pyrolysis [J]. CIESC Journal, 2023, 74(11): 4559-4569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||