CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 454-465.DOI: 10.11949/0438-1157.20240576
• Reviews and monographs • Previous Articles Next Articles
Yanjiao XU(), Linjin LOU(
), Zhuoqin FAN, Haomiao ZHANG(
), Jingdai WANG, Yongrong YANG
Received:
2024-05-30
Revised:
2024-07-02
Online:
2025-03-10
Published:
2025-02-25
Contact:
Haomiao ZHANG
徐艳焦(), 楼琳瑾(
), 樊茁钦, 张浩淼(
), 王靖岱, 阳永荣
通讯作者:
张浩淼
作者简介:
徐艳焦(2001—),女,硕士研究生,yanjiaoxu@zju.edu.cn基金资助:
CLC Number:
Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane[J]. CIESC Journal, 2025, 76(2): 454-465.
徐艳焦, 楼琳瑾, 樊茁钦, 张浩淼, 王靖岱, 阳永荣. 甲基铝氧烷的改性技术研究进展[J]. 化工学报, 2025, 76(2): 454-465.
1 | Ammala A, Bateman S, Dean K, et al. An overview of degradable and biodegradable polyolefins[J]. Progress in Polymer Science, 2011, 36(8): 1015-1049. |
2 | Chen E Y, Marks T J. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships[J]. Chemical Reviews, 2000, 100(4): 1391-1434. |
3 | Sauter D W, Taoufik M, Boisson C. Polyolefins, a success story[J]. Polymers, 2017, 9(6): 185. |
4 | Zijlstra H S, Harder S. Methylalumoxane—history, production, properties, and applications[J]. European Journal of Inorganic Chemistry, 2015, 2015(1): 19-43. |
5 | Sarzotti D M, Marshman D J, Ripmeester W E, et al. A kinetic study of metallocene-catalyzed ethylene polymerization using different aluminoxane cocatalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(9): 1677-1690. |
6 | Glaser R, Sun X S. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates[J]. Journal of the American Chemical Society, 2011, 133(34): 13323-13336. |
7 | Zijlstra H S, Collins S, McIndoe J S. Oxidation of methylalumoxane oligomers[J]. Chemistry, 2018, 24(21): 5506-5512. |
8 | Sinn H. Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments[J]. Macromolecular Symposia, 1995, 97(1): 27-52. |
9 | Negureanu L, Hall R W, Butler L G, et al. Methyaluminoxane (MAO) polymerization mechanism and kinetic model from ab initio molecular dynamics and electronic structure calculations[J]. Journal of the American Chemical Society, 2006, 128(51): 16816-16826. |
10 | Pédeutour J N, Radhakrishnan K, Cramail H, et al. Reactivity of metallocene catalysts for olefin polymerization: influence of activator nature and structure[J]. Macromolecular Rapid Communications, 2001, 22(14): 1095. |
11 | Andresen A, Cordes H G, Herwig J, et al. Halogenfreie lösliche Ziegler-Katalysatoren für die Ethylen-Polymerisation. Regelung des Molekulargewichtes durch Wahl der Reaktionstemperatur[J]. Angewandte Chemie, 1976, 88(20): 689-690. |
12 | Zijlstra H S, Joshi A, Linnolahti M, et al. Modifying methylalumoxane via alkyl exchange[J]. Dalton Transactions, 2018, 47(48): 17291-17298. |
13 | Roberg J K, Burt E A. High yield aluminoxane synthesis process: US5663394A[P]. 1997-09-02. |
14 | Zijlstra H S, Stuart M C A, Harder S. Structural investigation of methylalumoxane using transmission electron microscopy[J]. Macromolecules, 2015, 48(15): 5116-5119. |
15 | Bryliakov K P, Talsi E P. Frontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins[J]. Coordination Chemistry Reviews, 2012, 256(23/24): 2994-3007. |
16 | Ehm C, Cipullo R, Budzelaar P H M, et al. Role(s) of TMA in polymerization[J]. Dalton Transactions, 2016, 45(16): 6847-6855. |
17 | Tanaka R. Precise control of coordination polymerization via the modification of methylaluminoxane (MAO)[J]. Polymer Journal, 2020, 52(7): 661-670. |
18 | Crapo C C, Malpass D B. Synthesis of methylaluminoxanes: US4960878A[P]. 1990-10-02. |
19 | Kissin Y V, Brandolini A J. An alternative route to methylalumoxane: synthesis, structure, and the use of model methylalumoxanes as cocatalysts for transition metal complexes in polymerization reactions[J]. Macromolecules, 2003, 36(1): 18-26. |
20 | Tanaka R, Hirose T, Nakayama Y, et al. The preparation of boron-containing aluminoxanes and their application as cocatalysts in the polymerization of olefins[J]. Polymer Journal, 2016, 48(1): 67-71. |
21 | Sangokoya S A. Amino-aluminoxane compositions: US5371260A[P]. 1994-12-06. |
22 | Sangokoya S A. Aluminoxanes having increased catalytic activity: EP0645393B1[P]. 2000-01-05. |
23 | Brantley N H, Beard W R. Methylaluminoxane compositions, enriched solutions of such compositions, and the preparation thereof: US6518445[P]. 2003-02-11. |
24 | Bravaya N M, Panin A N, Faingol'd E E, et al. Isobutylalumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene[J]. Polymer Bulletin, 2016, 73(2): 473-491. |
25 | Henderson M A, Trefz T K, Collins S, et al. Characterization of isobutylaluminoxanes by electrospray ionization mass spectrometry[J]. Organometallics, 2013, 32(7): 2079-2083. |
26 | 吴江. 甲基铝氧烷合成技术研究[D]. 兰州: 兰州大学, 2007. |
Wu J. Study in synthetic technology of methylaluminoxane[D]. Lanzhou: Lanzhou University, 2007. | |
27 | Tran N H, Deavenport D L, Malpass D B, et al. Polymethylaluminoxane of enhanced solution stability: US5329032A[P]. 1994-07-12. |
28 | Sangokoya S A, Wiegand K E. Production of hydrocarbon-soluble hydrocarbylaluminoxanes: US5847177A[P]. 1998-12-08. |
29 | Babushkin D E, Brintzinger H H. Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy[J]. Chemistry, 2007, 13(18): 5294-5299. |
30 | Kleinschmidt R, van der Leek Y, Reffke M, et al. Kinetics and mechanistic insight into propylene polymerization with different metallocenes and various aluminium alkyls as cocatalysts[J]. Journal of Molecular Catalysis A: Chemical, 1999, 148(1/2): 29-41. |
31 | Ioku A, Hasan T, Shiono T, et al. Effects of cocatalysts on propene polymerization with [t-BuNSiMe2(C5Me4)]TiMe2 [J]. Macromolecular Chemistry and Physics, 2002, 203(4): 748-755. |
32 | Feng Y R, Zhang M B, Zhang H M, et al. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach[J]. Chemical Engineering Journal, 2021, 425: 131750. |
33 | Welborn H C. Metallocene, hydrocarbylaluminum and hydrocarbylboroxine olefin polymerization catalyst: US5001244A [P]. 1991-03-19. |
34 | Richter B, Meetsma A, Hessen B, et al. Synthesis and structural characterisation of a boralumoxane capable of activating a zirconocene ethene polymerisation catalyst[J]. Chemical Communications, 2001(14): 1286-1287. |
35 | Smith G M, Malpass D B, Palmaka S W. Modified polyalkylaluminoxane composition formed using reagent containing aluminum trialkyl siloxide: EP0818456B1[P]. 2003-04-02. |
36 | Malpass D B, Palmaka S W, Smith G M, et al. Hydrocarbon soluble alkylaluminoxane compositions formed by use of non-hydrolytic means: US5777143A[P]. 1998-07-07. |
37 | Smith G M, Palmaka S W, Rogers J S, et al. Polyalkylaluminoxane compositions formed by non-hydrolytic means: TW581768B [P]. 2004-04-01. |
38 | Sangokoya S A. Liquid clathrate aluminoxane compositions as co-catalysts with transition metal catalyst compounds: US5922631[P]. 1999-07-13. |
39 | Luo L B, Sangokoya S A, Diefenbach S P, et al. Haloaluminoxane compositions, their preparation, and their use in catalysis: US20060287448A1[P]. 2008-04-08. |
40 | Zhang M B, Feng Y R, Lou L J, et al. Flow toolkit for measuring reaction enthalpy and application to highly exothermic synthesis of alkylaluminoxanes[J]. Organic Process Research & Development, 2022, 26(5): 1506-1513. |
41 | 张春英, 王萍, 郑翔, 等. 铝氧烷的制备方法: 111454285A[P]. 2020-07-28. |
Zhang C Y, Wang P, Zheng X, et al. Preparation method of aluminoxane: 111454285A[P]. 2020-07-28. | |
42 | Zhang M B, Lou L J, Feng Y R, et al. A two-stage flow strategy for the synthesis of isobutyl-modified methylaluminoxane[J]. Reaction Chemistry & Engineering, 2023, 8(4): 763-769. |
43 | Au A K, Huynh W, Horowitz L F, et al. 3D-printed microfluidics[J]. Angewandte Chemie International Edition, 2016, 55(12): 3862-3881. |
44 | Wegner J, Ceylan S, Kirschning A. Flow chemistry—a key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1): 17-57. |
45 | Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
46 | Tabeling P. Introduction to Microfluidics[M]. Oxford: Oxford University Press, 2023. |
47 | Feng Y R, Wang J, Zhang H M, et al. A 3D-printed continuous flow platform for the synthesis of methylaluminoxane[J]. Green Chemistry, 2021, 23(11): 4087-4094. |
48 | Zhu Z, Yang C J. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis[J]. Accounts of Chemical Research, 2017, 50(1): 22-31. |
49 | Shang L R, Cheng Y, Zhao Y J. Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
50 | Watts P, Haswell S J. The application of micro reactors for organic synthesis[J]. Chemical Society Reviews, 2005, 34(3): 235-246. |
51 | Eilertsen J L, Rytter E, Ystenes M. In situ FTIR spectroscopy during addition of trimethylaluminium (TMA) to methylaluminoxane (MAO) shows no formation of MAO-TMA compounds[J]. Vibrational Spectroscopy, 2000, 24(2): 257-264. |
52 | Lacroix K V, Heitmann B, Sinn H. Behaviour of differently produced methylalumoxanes in the phase separation with diethyl ether and molecular weight estimations[J]. Macromolecular Symposia, 1995, 97(1): 137-142. |
53 | Hagendorf W, Harder A, Sinn H. Phase separation of methylalumoxane with diethyl ether[J]. Macromolecular Symposia, 1995, 97(1): 127-136. |
54 | Imhoff D W, Simeral L S, Sangokoya S A, et al. Characterization of methylaluminoxanes and determination of trimethylaluminum using proton NMR[J]. Organometallics, 1998, 17(10): 1941-1945. |
55 | Tanaka R, Kawahara T, Shinto Y, et al. An alternative method for the preparation of trialkylaluminum-depleted modified methylaluminoxane (dMMAO)[J]. Macromolecules, 2017, 50(15): 5989-5993. |
56 | Jordan D E. Visual titrimetric determination of total reactivity and differentiation of trialkylaluminum and dialkylaluminum hydride in mixtures[J]. Analytical Chemistry, 1968, 40(14): 2150-2153. |
57 | Thorn-Csányi E, Dehmel J, Halle O, et al. UV/Vis-spektroskopischer Nachweis einer selektiven Komplexbildung zwischen WOCl4 und trimethylaluminium. Ein weg zur Charakterisierung von methylaluminoxanen[J]. Macromolecular Chemistry and Physics, 1994, 195(9): 3017-3024. |
58 | Thorn-Csányi E, Dehmel J, Dahlke B. Development of a method for the determination of the “free” trimethylaluminum content in methylalumoxane[J]. Macromolecular Symposia, 1995, 97(1): 91-99. |
59 | Barron A R. New method for the determination of the trialkylaluminum content in alumoxanes[J]. Organometallics, 1995, 14(7): 3581-3583. |
60 | Ghiotto F, Pateraki C, Tanskanen J, et al. Probing the structure of methylalumoxane (MAO) by a combined chemical, spectroscopic, neutron scattering, and computational approach[J]. Organometallics, 2013, 32(11): 3354-3362. |
61 | Trefz T K, Henderson M A, Wang M Y, et al. Mass spectrometric characterization of methylaluminoxane[J]. Organometallics, 2013, 32(11): 3149-3152. |
62 | Babushkin D E, Semikolenova N V, Panchenko V N, et al. Multinuclear NMR investigation of methylaluminoxane[J]. Macromolecular Chemistry and Physics, 1997, 198(12): 3845-3854. |
63 | Bryliakov K P, Semikolenova N V, Panchenko V N, et al. Activation of rac-Me2Si(Ind)2ZrCl2 by methylalumoxane modified by aluminum alkyls: an EPR spin-probe, 1H NMR, and polymerization study[J]. Macromolecular Chemistry and Physics, 2006, 207(3): 327-335. |
64 | Joshi A, Zijlstra H S, Collins S, et al. Catalyst deactivation processes during 1-hexene polymerization[J]. ACS Catalysis, 2020, 10(13): 7195-7206. |
65 | Joshi A, Collins S, Linnolahti M, et al. Spectroscopic studies of synthetic methylaluminoxane: structure of methylaluminoxane activators [J]. Chemistry, 2021, 27(34): 8753-8763. |
66 | Collins S, Joshi A, Linnolahti M. Formation and structure of hydrolytic methylaluminoxane activators[J]. Chemistry, 2021, 27(62): 15460-15471. |
67 | Joshi A, Zijlstra H S, Liles E, et al. Real-time analysis of methylalumoxane formation[J]. Chemical Science, 2020, 12: 546-551. |
68 | Luo L B, Younker J M, Zabula A V. Structure of methylaluminoxane (MAO): extractable [Al(CH3)2]+ for precatalyst activation[J]. Science, 2024, 384(6703): 1424-1428. |
69 | Soares J B P, Hamielec A E. Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double-bonds[J]. Macromolecular Theory and Simulations, 1996, 5(3): 547-572. |
70 | Tritto I, Sacchi M C, Locatelli P, et al. Low-temperature 1H and 13C NMR investigation of trimethylaluminium contained in methylaluminoxane cocatalyst for metallocene-based catalysts in olefin polymerization[J]. Macromolecular Chemistry and Physics, 1996, 197(4): 1537-1544. |
71 | Soshnikov I E, Semikolenova N V, Bryliakov K P, et al. Nature of heterobinuclear Ni(Ⅰ) complexes formed upon the activation of the α - d i i m i n e complex LNiⅡBr2 with AlMe3 and MMAO[J]. Organometallics, 2021, 40(7): 907-914. |
72 | Khoshsefat M, Ma Y, Sun W H. Multinuclear late transition metal catalysts for olefin polymerization[J]. Coordination Chemistry Reviews, 2021, 434: 213788. |
73 | Bollmann A, Blann K, Dixon J T, et al. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. Journal of the American Chemical Society, 2004, 126(45): 14712-14713. |
74 | Overett M J, Blann K, Bollmann A, et al. Mechanistic investigations of the ethylene tetramerisation reaction[J]. Journal of the American Chemical Society, 2005, 127(30): 10723-10730. |
75 | van Leeuwen P W N M, Clément N D, Tschan M J L. New processes for the selective production of 1-octene[J]. Coordination Chemistry Reviews, 2011, 255(13/14): 1499-1517. |
76 | Hao B B, Alam F, Jiang Y, et al. Selective ethylene tetramerization: an overview[J]. Inorganic Chemistry Frontiers, 2023, 10(10): 2860-2902. |
77 | Jabri A, Mason C, Sim Y, et al. Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state[J]. Angewandte Chemie International Edition, 2008, 47(50): 9717-9721. |
78 | Ruiz-Orta C, Fernandez-Blazquez J P, Anderson-Wile A M, et al. Isotactic polypropylene with (3, 1) chain-walking defects: characterization, crystallization, and melting behaviors[J]. Macromolecules, 2011, 44(9): 3436-3451. |
79 | Lamb M J, Apperley D C, Watson M J, et al. The role of catalyst support, diluent and co-catalyst in chromium-mediated heterogeneous ethylene trimerisation[J]. Topics in Catalysis, 2018, 61(3): 213-224. |
[1] | Xin YING, Miao DU, Pengju PAN, Guorong SHAN. Synthesis, structure and properties of high refrective index polythiourethane [J]. CIESC Journal, 2025, 76(2): 858-867. |
[2] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
[3] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[4] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[5] | Chengxiu WANG, Dashan SONG, Zhihui LI, Xiao YANG, Xingying LAN, Jinsen GAO, Chunming XU. Stable flow characteristics of Geldart C particles of desulfurization ash in a loop-coupled riser [J]. CIESC Journal, 2024, 75(4): 1485-1496. |
[6] | Kaixuan LIU, Qinyuan JIANG, Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG. Controlled synthesis of high-density ultralong carbon nanotubes: progress and prospects [J]. CIESC Journal, 2024, 75(4): 1355-1369. |
[7] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[8] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[9] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[10] | Keqing LIU, Yan CUI, Qiong YU, Likun CHEN, Yongchao ZHENG, Zhiwei QIAO, He ZHENG. Study on the mimic enzymatic performance of amino acid modified MOF-808 for nerve agents decontamination [J]. CIESC Journal, 2024, 75(2): 616-625. |
[11] | Xudong CHEN, Weidong FU, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis of amphiphilic polyphosphoester-PTX prodrug and its potential in reduction-responsive drug release [J]. CIESC Journal, 2024, 75(12): 4815-4824. |
[12] | Zhengya DONG, Xiaojing ZHU, Jingfu JIA, Jie ZHANG, Zhuotao ZHENG, Xiaolin LIU, Zhilin WU. Scale-up of ultrasonic microreactor systems and their applications in the preparation of nanomaterials [J]. CIESC Journal, 2024, 75(11): 4095-4119. |
[13] | Jian RUAN, Shuang LI, Zhenghui WEN. Application of automation and artificial intelligence in flow chemistry [J]. CIESC Journal, 2024, 75(11): 4120-4140. |
[14] | Qi CHANG, Wei GE. Simulation study on the integration of water-gas shift and CO2-mineralization in a packed fluidized bed [J]. CIESC Journal, 2024, 75(11): 4237-4253. |
[15] | Yue MA, Dong CAO, Daojian CHENG. General synthesis and application of atomically dispersed catalysts [J]. CIESC Journal, 2024, 75(11): 4048-4064. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||